Broadband systems' features

Christoph Legutko

Wireless Standards and Regulations Manager Intel Corporation, Global Public Policy

Chisinau, 04.05.2010

How Will Operators Meet Demand? Global Mobile Data Traffic Growth

TB/mo. 2,500,000			Independent research firm tests showed an average speed of 3.8 Mbps for downloads and 1.7 Mbps for uploads for the Portland, OR Clearwire network ¹ , four times as fast as current 3G networks. ²				
2,000,000							
1,500,000			The problem with 3G is in the air and the backhaul. The network was built for narrow band and now users are downloading video on iPlayer, on what is				
1,000,000	essentially a voice network. In London my calls have started dropping and on the motorway my phone drops between cells. ³						
500,000					Detween cens		
0)					
	2008	2009	2010	2011	2012	2013	

Source: Cisco Visual Networking Index, July 2009. Forecast, 2008 -2013

[1] Signals Ahead Research, Volume 5, No. 11, 9 September, 2009.

[2] Saul Hansell, Sprint Banks on WiMax to Win Back Market Share, New York Times, 27September 2009

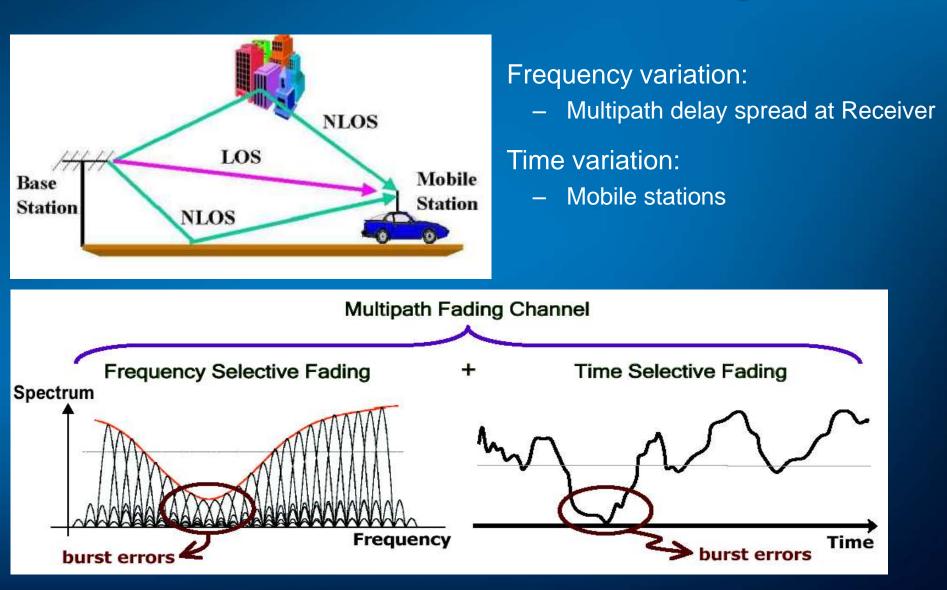
[3] "U.S. 3G Networks Deliver Less Than Expected," Phillip Redman, Gartner Research, 22 January 2009.

Mobile Voice vs. Mobile Internet

Traffic Equivalents^{*} 1 Smartphone = 30 Handsets 1 Laptop = 450 Handsets

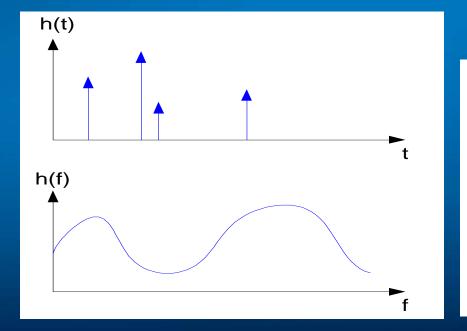
~ 10 Kbps Constant Rate

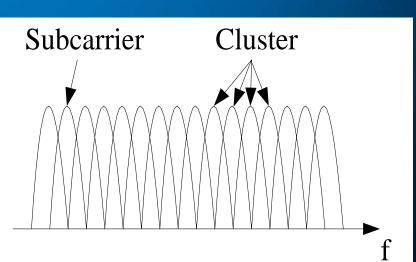
A network optimized for mobile voice cannot handle high numbers of mobile internet users


1-5 Mbps Burst Traffic

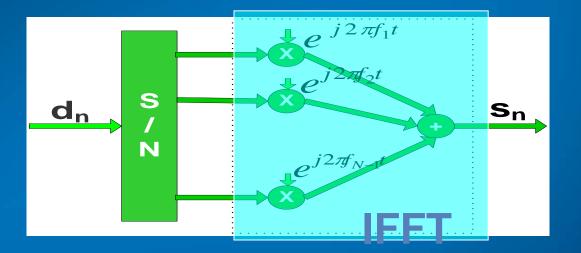
More Spectrum Needed More Backhaul And Different Network Architecture Required

Mobile Internet Requires a Technology Revolution

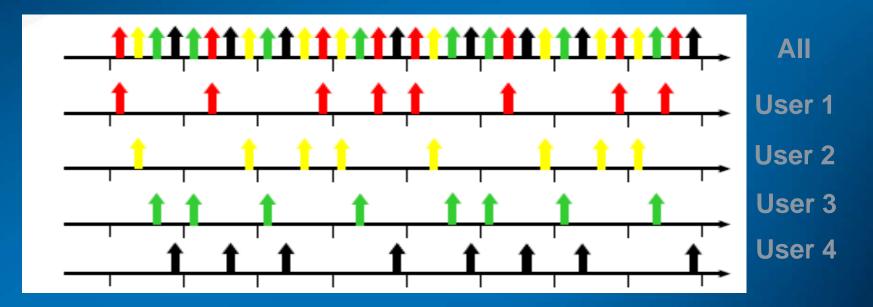

* Source: Cisco Visual Networking Index, July 2009


Broadband Wireless Channel Challenges

OFDM Basics


- Orthogonal frequency division multiplexing
- Frequency-selective wideband channel → Parallel orthogonal flat narrowband channels

Why OFDM ?

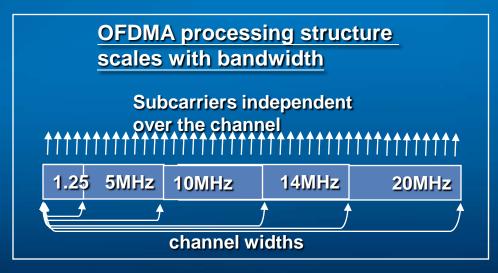

- TDMA and CDMA suffers in high delay spread channels
- How to combat frequency selective fading? \rightarrow parallel orthogonal flat narrowband channels

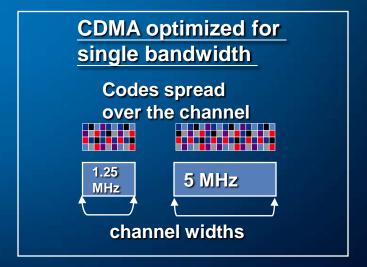
Orthogonal subcarriers \rightarrow high spectral efficiency FFT fast algorithm \rightarrow efficient implementation Low data rate on each subcarrier \rightarrow low ISI - Inter Symbol Interference Combing with advanced FEC - Forward Error Correction \rightarrow reducing burst errors

Cost-effective broadband wireless technology

OFDMA – Multi User Access

- Multiple users keep orthogonal sub-channels during multiple access
- Flexible sub-channelization
 - Pseudo-random permutation for diversity
 - Contiguous permutation for selectivity
- High granularity bandwidth allocation
- Scalable structure


OFDMA Scalability


CDMA does not scale well with multiple channel bandwidths

- CDMA 2000 = 1.25MHz channels
- WCDMA/HSDPA = 5 MHz channels

OFDMA allows for optimal operation in varying channel widths

• OFDMA = 1.25 MHz, 2.5, 5, 10, 14 and 20 MHz channels

Summary

- physical layer uses OFDMA and is optimized for mobile broadband
 - Robust against frequency-selective fading
 - Robust against ISI Inter Symbol Interference
 - Multi-user access
 - High data rate in both downlink & uplink
 - Efficient implementation
 - Flexible & scalable architecture
 - Diversity, AAS Advanced Antenna System, and MIMO

Glossary

AAS – Advanced Antenna System AMC – Adaptive Modulation and Coding AMS – Adaptive MIMO Switching ARQ – Automatic Repeat Request BS – Base Station BTS – Base Station Transceiver CC – Convolution Coding CDMA – Code Division Multiple Access CP – Cyclic Prefix CQICH – Channel Quality Indication Channel CTC – Convolutional Turbo Code CSI - Channel State Information CSN – Connectivity Service Network DL – Down Link (BS to MS) FCC – Federal Communications Commission FDD – Frequency Division Duplex FEC – Forward Error Correction FFT – Fast Fourier Transform FUSC – Fully used sub carrier HARQ – Hybrid Automatic Repeat Request ISI – InterSymbol Interference

LA – Link Adaptation

LOS – Line Of Sight LTE – Long Term Evolution MCS – Modulation-coding scheme MIMO – Multiple-Input, Multiple-Output (Antenna system) MME – Mobility Management Entity **MS-** Mobile Station NLOS – Non Line of Sight **OFDM – Orthogonal Frequency Division Multiplexing** OFDMA – Orthogonal Frequency Division Multiplexing (Multiple Access) PHY – Physical Layer PUSC – Partially used sub carrier QoS – Quality of Service **RRM – Radio Resource Management RX** - Receiver SM – Spatial Multiplexing SNR – Signal-t0-Noise Ratio STC – Space-Time Coding SISO – Single Input Single Output TDD – Time Division Duplex TX - Transmitter UL – Up Link (MS to BS)

WWAN – Wireless Wide Area Network

Thank You

