

Divna Vuckovic

Head of Technology Customer Unit North Balkans within MU South East Europe

"Broadband for all"

Broadband as an Enabler for New Services and Economic Growth

Broadband benefits society

Individuals, enterprises and governments

Universal need for services & efficiency gain

2

Mobile and Fixed Broadband services spur positive growth circle

ERICSSON 🗐

Chisinau, Moldova, 24 – 26 August 2009

Broadband Everywhere

Live meeting without traveling via full size video conferencing

Working from home

Increased efficiency, productivity & customer satisfaction

Broadband on the move

Healthcare to all and everywhere

The Individual TV Experience

Full Service Broadband A consumer proposition

Broadband services to a screen of your choice

Large and fast-growing eco-system

- Around 1470 HSPA-devices from around 170 suppliers
- Strong mobile traffic growth data 6 times more than voice
- LTE will accelerate this trend further more spectrum needed!

Chisinau, Moldova, 24 – 26 August 2009

Telecom replaces travel

Source: Life Cycle Assessment study, Ericsson Research, 2007

Sustainable communications

Integrated sites

Ericsson Tower Tube Lower operation cost Up to 40% less energy & CO₂ Lower manufacturing cost About 30% less energy & CO₂

Solar village charger Prototype for use in Millennium Villages Charges up to 20 phones overnight

Green Site Solutions Solar, biofuel, hybrid, fuelcell, wind

Source: Ericsson

Impressive broadband growth

Broadband subscription forecast

10

Fixed broadband includes: DSL, FTTx, Cable modem.

Source: Internal Ericsson

Mobile broadband 80% of all subscriptions in 2014

ChisTinis Milder Contains for Wand looking statements

Mobile broadband here and now

123 million HSPA subscribers today

Around 270 commercial HSPA networks in around 115 countries today

Chisinau, Moldova, 24 – 26 August 2009

Mobile Broadband ...

Mobility is the key driver for acquiring & usage

Source: Ericsson Consumer Lab, Mobile broadband Usage, drivers and barriers study 2008

More broadband usage drives demand for everywhere usage

Data now 6 times more than voice

Fast subscriber growth

- 300 million WCDMA/HSPA subscribers world wide
- 6 million new HSPA subscribers per month, 95 million in total
- 1276 HSPA devices are launched from 164 suppliers
- HSPA is deployed in 237 networks in 105 countries/territories
- 85% of the traffic in WCDMA/ HSPA networks is data

Strong traffic growth – WCDMA/HSPA world wide

Source: GSMA, GSA, and NetQB, November-08

LTE will accelerate this trend further - more spectrum needed!

Chisinau, Moldova, 24 - 26 August 2009

Full Service Broadband architecture

Mobile System Evolution Global Support

Current 3GPP bands

FDD										
Band	"Identifier"	Frequencies (MHz)								
1	IMT Core Band	1920-1980/2110-2170								
2	PCS 1900	1850-1910/1930-1990								
3	GSM 1800	1710-1785/1805-1880								
4	AWS (US & other)	1710-1755/2110-2155								
5	850	824-849/869-894								
6	850 (Japan)	830-840/875-885								
7	IMT Extension	2500-2570/2620-2690								
8	GSM 900	880-915/925-960								
9	1700 (Japan)	1750-1785/1845-1880								
10	3G Americas	1710-1770/2110-2170								
11	UMTS1500	1428-1453/1476-1501								
12, 13, 14, 17	US 700	698-716/728-746 776-788/746-758 788-798/758-768								
17		704-716/734-746								

	TDD										
Band	"Identifier"	Frequencies (MHz)									
33,34	TDD 2000	1900-1920 2010-2025									
35,36	TDD 1900	1850-1910 1930-1990									
37	PCS Center Gap	(1915)1910-1930									
38	IMT Extension Center Gap	2570-2620									
39	China TDD	1880-1920									
40	2.3 TDD	2300-2400									

Additional (FDD&TDD)										
	800 MHz	790-862								
	3.5 GHz	3400-3600								
	3.7 GHz	3600-3800								

Wide range of bands enables global support

Harmonization of spectrum

International harmonization of spectrum gives:

- rich ecosystem providing interoperability
- easy cross border coordination
- international roaming
- availability of affordable products

...bridging the digital divide

Harmonized spectrum has enabled global mobile penetration of 59%

Mobile Broadband Performance

Spectrum and Global harmonization

-	1	**		-	19.00				10.07	**		
Downlink				Duplex gap	Uplink							
30 MHz (6 blocks of 5 MHz)				11 MHz	30 MHz (6 blocks of 5 MHz)							

Mobile Broadband Performance

3GPP family success gives economies of scale

Harmonized spectrum is a key mass market enabler

Peak-rate and user rate

- HSPA provides peak rates of 7.2, 14.4, 21, 28, 42 Mbps and beyond
- LTE provides peak rates of 100, 150, 300 Mbps and beyond

- Average HSPA user rates typically 2-4 Mbps today
- User rates for LTE in 20 MHz spectrum typically 5x 10x todays Mobile broadband

Relation between Peak Rate & Coverage

Capacity does not scale with peak rate

Chisinau, Moldova, 24 - 26 August 2009

HSPA and LTE capacity evolution

Downlink spectrum efficiency

Bit/Hz

ERICSSON 📕

98.9% population coverage HSPA 14/1.4 Mbps nation wide, up to 200km cell range

Telstra Investor Day, Nov. 1 '07

Strong uptake with superior coverage and speed

HSDPA 7.2 Mbps & Extended Range Drive testing in Australia, December 2006

Higher Speed – Longer Range

HSPA Extended range 2.1 MHz examples

- Coverage expansion
 - Fixed Wireless Broadband
 - Roaming fee reductions
 - Site Reduction
- Roaming revenues

28 references on 2100 MHz

LTE Simulation – Urban Network

End-user perceived bit-rate with typical best-effort data traffic pattern, 2.6 GHz band, 20 MHz, on a 900 MHz site grid

5-10X user data rate compared to current HSPA very realistic

Spectrum strategy for 2G/3G/LTE

LTE the Global standard for Next Generation (4G)

Spectrum Flexibility

LTE provides spectrum flexibility for operation in differently-sized spectrum

LTE supports paired and unpaired spectrum on the same HW platform

Unpaired spectrum

Maximum commonality between FDD and TDD

30

3GPP Bands – Likely usage

Freque	Frequency Division Duplex - FDD										
Band	Technology	Frequencies (MHz)									
1	HSPA	1920 -1980/2110 -2170									
2	HSPA	1850 -1910/1930 -1990									
3	LTE	1710 -1785/1805 -1880									
4	(HSPA) LTE	1710 -1755/2110 -2155									
5	HSPA	824 -849/869 -894									
6	HSPA (Japan)	830 -840/875 -885									
7	LTE	2500 -2570/2620 -2690									
8	HSPA later some countries LTE	880 -915/925 -960									
9	HSPA (Japan)	1750 -1785/1845 -1880									
10	(HSPA) LTE	1710 -1770/2110 -2170									
11	HSPA (Japan)	1428 -1453/1476 -1501									
12, 13, 14, 17	LTE	698 -716/728 -746 777 -787/746 -756 788 -798/758 -768 704 -716/734 -746									

Tim	Time Division Duplex - TDD									
Band	Technology	Frequencies (MHz)								
33, 34	later	1900 -1920 2010 -2025								
35, 36	-	1850 -1910 1930 -1990								
37	-	(1915)1910 -1930								
38	LTE TDD	2570 -2620								
39	LTE TDD	1880 -1920								
40	LTE TDD	2300 -2400								

Additional (FDD&TDD)										
LTE FDD	790 - 862									
LTE FDD & TDD	3400 - 3600									
LTE FDD & TDD	3600 - 3800									

= Under study in 3GPP

There will be "HSPA-bands" and "LTE-bands"

Chisinau, Moldova, 24 – 26 August 2009 ECC Decision of [June] 2009 on harmonised conditions for Mobile/Fixed Communications Networks operating in the band 790-862 MHz

"Preferred Harmonised frequency arrangement"

(realistic)

791-796	796- 801	801-806	806- 811	811-816	816- 821	821 - 832	832-837 837-842 842-847 847-852 852-857					857- 862
Downlink					Duplex gap		Uplink					
30 MHz (6 blocks of 5 MHz)					11 MHz	30 MHz (6 blocks of 5 MHz)						

Note 1: Guardband of 1 MHz between Broadcasting below 790 and mobile DL starting at 791 MHz Note 2: Sweden, Germany, France; have announced auctions of the band to happen late 2009 or during 2010

"Guidance for administrations not implementing the preferred channelling arrangements" (specific national circumstances)

790-797	797-802	802-807	807-812	812-817	817-822	822-827	827-832	832–837	837–842	842–847	847-852	852-857	857-862
Guard band	Unpaired												
7 MHz	65 MHz (13 blocks of 5 MHz)												

PT1 agreement April 29 ; ECC Decision June 2009 ; EC Recommendation end 2009

Summary 1

- Broadband everywhere and anytime central to closing digital divide
 - Broadband benefits society and economy enhancing efficiency, productivity, sustainability as well as social and personal life
- A seamless user experience on any device, any service, anywhere
 - Moving towards a converged broadband enabled world
- Actions needed to stimulate deployments
 - Additional harmonized spectrum for broadband, everywhere and for all
 - Holistic policies/regulations, less and fair regulation, more certainties

Mobile Broadband Performance

- Mass market broadband with HSPA
- LTE the global choice for next generation (4G) – speeds 5x-10x that of HSPA today

Spectrum and Global Harmonization

- Globally harmonized IMT spectrum essential
- FDD always better than TDD

Harmonized spectrum and mainstream HSPA and LTE technologies essential

