

INSTITUT FÜR NACHRICHTENVERMITTLUNG UND DATENVERARBEITUNG Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Evoluation of Network Technologies and its Impact on Traffic Engineering

Prof. Dr.-Ing. Dr. h. c. mult. Paul J. Kühn Institute of Communication Networks and Computer Engineering (IKR) University of Stuttgart & International Advisory Council (IAC) International Teletraffic Congress (ITC) kuehn@ikr.uni-stuttgart.de Phone: +49-711-6858027, Fax: +49-711-6857983

ITU/ITC Regional Seminar on Network Evoluation to Next Generation Networks and Fixed Mobile Convergence for CEE, CIS and Baltic States Moscow, April 27-30, 2004

Outline

1 Network Developments

- **2 Service Developments**
- **3 Quality of Service**

4 Conclusion: General Observations and Research Areas

Institute of Communication Networks and Computer Engineering

Outline

1 Network Developments

- Telecommunication Networks
- Computer Communication Networks
- Technological Developments

Telecommunication Networks

- 1200 Million Subscribers (Fixed Network)
- 1400 Million Subscribers (Mobile Networks)
- Intelligent Network Services (IN)

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Annual Growth 10%

Annual Growth 50%

Computer Communication Networks

Institute of Communication Networks and Computer Engineering

Development of User Numbers

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Conscillation of the

Technological Developments

-

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Outline

1 Network Developments

- Telecommunication Networks
- Computer Communication Networks
- Technological Developments

2 Service Developments

- Service Categories
- Service and Technology Convergence
- Application Scenarios

Institute of Communication Networks and Computer Engineering

Service Categories

Institute of Communication Networks and Computer Engineering

Development Scenario

Service and Technology Convergence

Institute of Communication Networks and Computer Engineering

Application Scenario

Institute of Communication Networks and Computer Engineering

Application Scenario

Navigation Support

Institute of Communication Networks and Computer Engineering

Outline

1 Network Developments

- Telecommunication Networks
- Computer Communication Networks
- Technological Developments

2 Service Developments

- Service Categories
- Service and Technology Convergence
- Application Scenarios

3 Quality of Service (QoS)

- Definition of QoS
- Traditional Solutions
- Challenges for New Services

Quality-of-Service (QoS) Definition

QoS:

Entirety of all features characterizing the perception of a service (application) at the user level ("user perceivable criteria")

Features:

Delay (average, peak, distribution, percentile, ...) of information

Loss (average, peak) of information or of a connection

Resolution, audibility, ... of information content

Reliability, dependability, availability, accountability, security of service

Quantifyable QoS (Q2S):

Measurable value ("Metric") in the widest sense

Institute of Communication Networks and Computer Engineering

Factors Influencing QoS

Factor	Reason
Source Traffic	Coding Scheme, Human Factors
Network Resources	Capacity Limits, Network Planning
Operational Strategies	Resource Management
Network Management	Fault Detection, Resilience

Examples

Institute of Communication Networks and Computer Engineering

Multi-Level Source Model for IP-Applications

Institute of Communication Networks and Computer Engineering

Client-Server Communication

Example: Network File System (NFS)

Institute of Communication Networks and Computer Engineering

HTTP Application

Institute of Communication Networks and Computer Engineering

Internet Routing

 \square

Institute of Communication Networks and Computer Engineering

Traditional Solutions

Example 1: Telecommunication Services

Traditional Solution is not feasible for many new applications due to:

- Variable bitrate sources (burst traffic)
- Overhead for connection management (delay, state management, ...)
- Integration of many services with quite different characteristics
- Inflexibility with respect to adaptation to application requirements
- Cost

Institute of Communication Networks and Computer Engineering

Traditional Solutions

Example 2: Internet

"Best Effort Service": No admission control No resource reservation Unpredictable delays and losses

BES is not feasible for many new applications due to:

• No guarantees on QoS

Institute of Communication Networks and Computer Engineering

QoS Management in the Internet

Traffic Classes in the IntServ-Model

- Guaranteed Service
- Controlled Load Service
- Best Effort Service Use of RSVP

(similar to CBR and rt-VBR)

(similar to nrt-VBR)

(similar to UBR)

Traffic Classes in the DiffServ-Model

- Expedited Forwarding (Premium Service)
- Assured Forwarding with different Priorities

Hop-by-Hop Control

IntServ-Model

Flow Description by

Flow Specifications (FlowSpec) Service Class Reserve Specification (RSpec) Traffic Specification (TSpec)

Filter Specification (FilterSpec)

Institute of Communication Networks and Computer Engineering

DiffServ Model

Negotiation of max. Bitrate between User and ISP for Aggregated Traffic Volumes Classification of Traffic Class by Access Routers

- Premium Service: Separate Queues and Prioritized Transport provide virtual leased Line Service Policing Function by Border Router
- Assured Service: Use of Priority to provide QoS for short Bursts Policing Function and Packet Dropping by Border Router Appropriate Dimensioning of Transmission Resources by ISP

Per Hop Behaviour (PHB) Routing, Marking of IP Packets within DS-Field

Institute of Communication Networks and Computer Engineering

Tag Switching

Fast switching along pathes

Institute of Communication Networks and Computer Engineering

philologian shipe

Peer-to-Peer File Sharing

Institute of Communication Networks and Computer Engineering

Challenges of NG Internet with Respect to QOS

- Tremendous increase in bandwidth demand in mobile and fixed networks for new applications
 Ahead: Japan and Rep. of Korea (70/60 % mobile Internet users;
 US/Europe < 10%)</p>
 Asia-Pacific Region leading in broadband penetration
- Rapid decrease of internat. bandw. pricing from 111 TUSD (1998) to 10 TUSD (2002) for US-Japan 1Mbps link per year
- NG Internet Technology and broadband access
- Fast routing algorithms
- Convergence of Internet and Mobility
- Adaptive traffic control (e.g., for Peer-to-Peer applications)
- Negotiable QoS Levels and QoS guarantees
- Accounting and charging for highly variable bitrate services
- Ubiquitous computing and ad hoc communication networks
- Adaptation of source coding and network traffic control
- QoS across multiple layers and heterogeneous network technologies

Research Topics - Communication & Security

Architectures & Protocols

- Unified Communication based on IPv6
- Communication across different Networks
- Mobility Management based on Mobile IP Concepts
- Dynamic Address Management
- Horizontal and Vertical Handover
- Integration of Ad Hoc Networks (infrastructureless)
- Middleware Concepts
 Abstraction from Underlying Network Infrastructures
- Design & Implementation
- Standardization

Research Topics - Communication & Security

Mobility

- Modelling of Mobility of Users and Data
- Modelling of (Communication) Traffic
 -spatial and temporal
- Disconnected Operation (information Caching and Fuelling)
- Predictive Information Provision (Hoarding)
- Simulation Methods for Mobility
- Performance

Research Topics - Security & Privacy

and the second

Example

- Tracking of Location May Cause Severe Privacy Problems
- Similar Problems Arise from Recording of User Activities

Institute of Communication Networks and Computer Engineering

Research Topics - Security & Privacy

- Protection Against Concatenation between Location Data and User Identity
- Methods:
 - Pseudonymization
 - Authentication
 - Multilateral Security concepts: Negotiation of Protection Aims and Strengths
 - Accountability and Non-Repudiation
 - Integrity
- Security Protocol Design

Conclusion (1): General Observations

• Change of Paradigms in the Communication Sector

- heterogeneous network technologies, broad spectrum of applications
- trend directs to IP-based network and transport protocols
- technology push and market pull

Success Factors

- time to market
- open platforms
- user acceptance

Design Processes

- limited development periods
- specialization and limitation to core competences ("make or buy?")
- design automation, design platforms and tools

• Standardization and Quality

- proprietary solutions vs. open platforms
- need for standardization
- product quality and quality of service

Institute of Communication Networks and Computer Engineering

Conclusion (2): Research Areas

• Integration of the various Network Technologies

- fixed, mobile and ad hoc networks
- internet and photonic technologies
- support of autoconfiguration and manageability

Platforms

- advanced middleware concepts
- service creation support
- application programming interfaces

New Application Paradigms

- location and context based services
- nomadic communications and ubiquitious computing
- overlay networks

New Business Models

- micropayment
- quality of service
- scalable security

Institute of Communication Networks and Computer Engineering