

Switching planning		
Location problem		
Theoretically for the set of optimal location derivatives of the total network cost function, <i>C</i> , with regard to X_E and Y_E are equal to zero : $\PC/\PX_E = \PC/\PY_E =$	$ \begin{array}{l} & (X_E, Y_E) \text{ the partial} \\ & 0 \\ & 0 \end{array} \right\} \text{for E} = 1, 2, \dots \text{NEX} \end{array} $	
Different methods for solving this 2*E equation sy depending upon the methods of <i>measuring the dis</i>	ystem could be employed at ances in the network	
In the most complicated case we get a system of 2° equations If $\partial C/\partial X_E$ and $\partial C/\partial Y_E$ are expanded into Taylor-set of 2^*NEX linear equations in ΔX_F and ΔY_F , whice standard methods	* <i>NEX non-linear</i> ries this leads to a system ch can easily be solved by	

Switching planning Simplified method for location optimization		
For optimal locations (X_E, Y_E) the partial derivatives of the cost function $C = S_j$ with regard to X_E and Y_E are equal to zero : $\partial C/\partial X_E = 0$ for $E = 1, 2, \dots NEX$		
For a case with one location only for X_E we get:	$ \P C / \P X_E = \sum_{(i,j) \in E} [sub(i,j) \cdot C_c) (D_i) $	D_E) · $D_E / D_E / X_E$
	the partial derivative depends	only on the distance
Network Planning Strategy fo	or evolving Network Architectures	Session 4.2- 6

Network Planning Strategy for evolving Network Architectures

