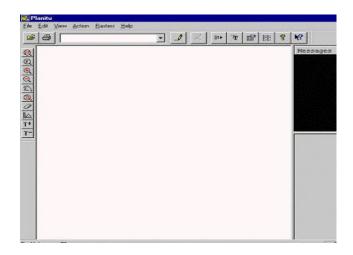


Regional Seminar for the EUR and CIS Region on Network Planning Strategy for Evolving Network Architectures

Session 3.6

Case studies with traffic forecasting, optimization benefits and impact on solutions

ITU, Warsaw - Poland, 06 - 10 October 2003


Case studies:

Traffic forecasting, optimization benefits and impact on solutions

Presented with application of the network planning tool PLANITU in the form of a live demo.

PLANITU is a tool for optimisation and dimensioning of telecom networks, based on an integrated interactive approach for finding minimum cost solutions for:

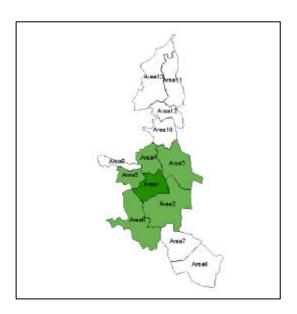
- location and boundaries of exchanges
- selection of switching and transmission equipment
- circuit quantities, traffic routing, switching hierarchy
- choice of transmission paths.

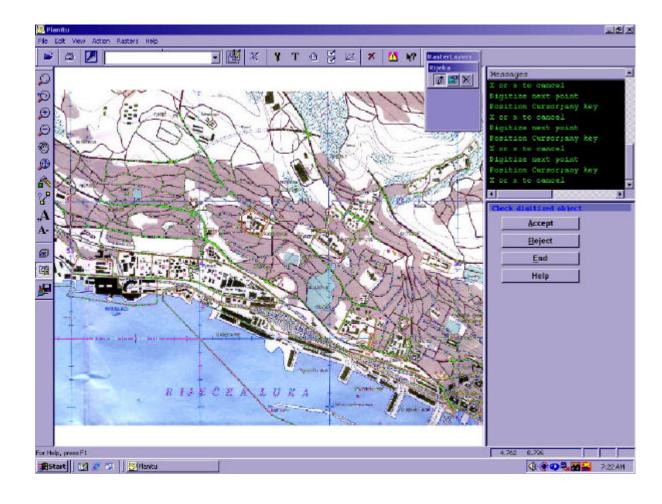
APPLICATION:

In PSTN circuit-switched (TDM) networks dimensioning and optimization , very limited for Data (packet) networks, limited for investigation of the evolution to NGN.

Application as training tool for network planning – set of real case studies data, self-training users manual, real-time help functions.

Service/Traffic forecasting:

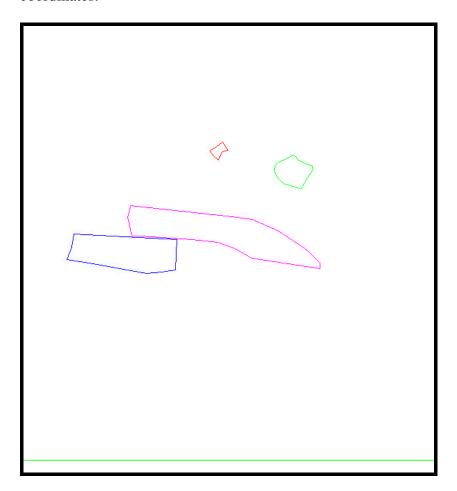

Digitizing of zones


Subscriber zones

Group of subscribers, homogeneously distributed in a geographical area (group of buildings, houses, etc.)

- usually the city centre is surrounded by urban areas with high customer density, while the areas in the edge are suburban areas
- often the set of areas is similar to exchange areas

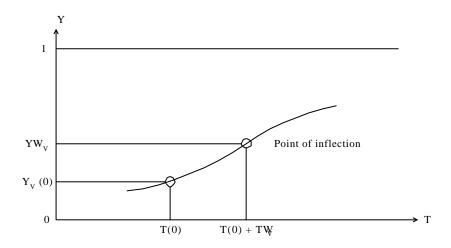
They can be from several to several hundreds.



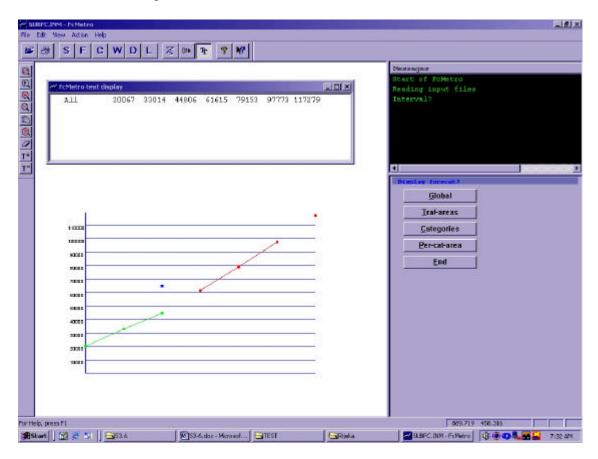
Digitizing of zones

Subscriber zones

Digitizing result – subscriber zones after digitizing with PLANITU as raster coordinates:


Digitizing result – data file with coordinates:

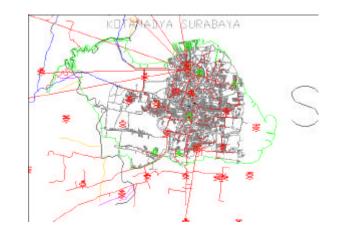
Z1	9 1z	VT340		1.533	2.259	0.95	5 1	.215 1	0 1
1.533	3 1.041	1.565	1.128	1.578	1.215	2.259	1.179	2.250	0.977
2.159	0.964	2.058	0.955	1.706	1.014	1.533	1.041		
Z2	10 1z	VT340		2.483	2.598	1.70	4 1	.823 2	0 1
2.483	3 1.764	2.511	1.727	2.538	1.704	2.547	1.736	2.566	1.759
2.598	3 1.768	2.566	1.823	2.520	1.791	2.488	1.768	2.483	1.764
Z3	15 1Z	VT340		1.935	3.210	0.98	2 1	.403 4	0 1
1.962	1.201	1.935	1.325	1.953	1.403	2.625	1.329	2.762	1.311
2.931	1.233	3.123	1.110	3.210	1.019	3.210	0.982	2.758	1.051
2.648	3 1.119	2.529	1.160	2.364	1.179	2.022	1.201	1.962	1.201
Z4	18 1Z	VT340		2.908	3.164	1.51	2 1	.736 3	0 1
3.023	3 1.732	2.982	1.709	2.936	1.690	2.913	1.668	2.908	1.631
2.931	1.585	2.954	1.563	2.977	1.544	3.014	1.535	3.059	1.521
3.082	2. 1.512	3.164	1.645	3.160	1.663	3.114	1.681	3.064	1.704


Forecasting

Methods for forecasting of subscribers - Logistic model

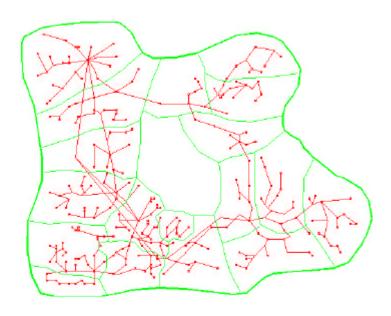
The development is supposed to follow a curve which first accelerates, then passes a point of inflection, and finally the development slows down and approaches an asymptote, the "saturation level", or "the maximum density".

Forecasting of subscribers result – subscriber forecast after proceeding with PLANITU forecasting tool FCRURAL :

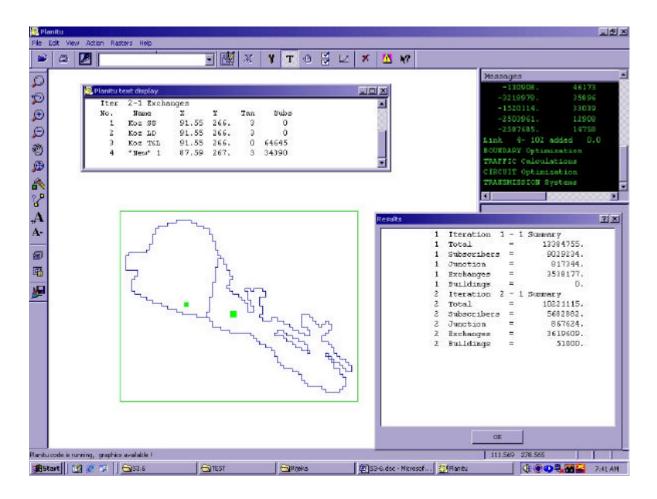


Optimization benefits and impact on solutions:

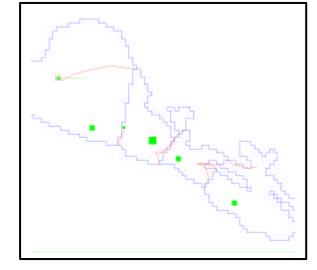
Optimizing of telecom networks


Local Networks optimization objectives:

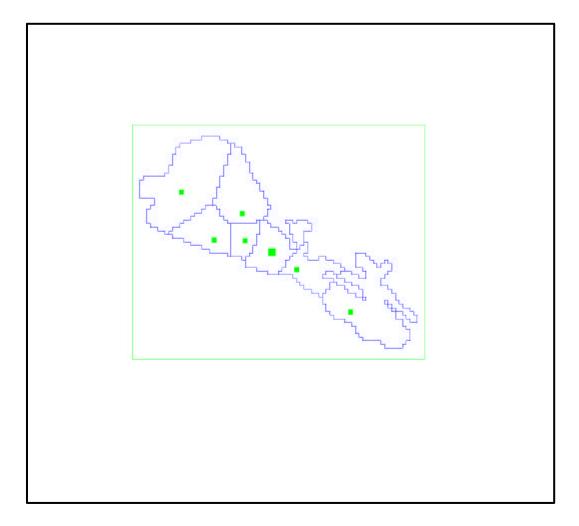
- Exchange locations
- Exchange boundaries
- RSU locations & boundaries
- Inter-exchange network
- Exchange hierarchy
- Transmission systems

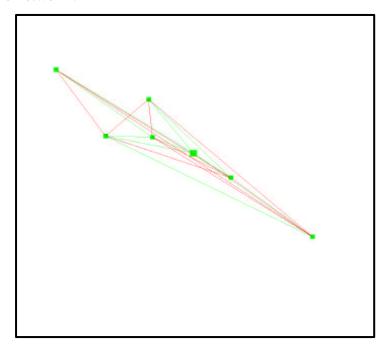

Rural Networks optimization objectives:

- Exchange locations & boundaries
- Exchange hierarchy
- Inter-exchange network
- Transmission systems



Optimizing of local network


Optimization results – application of PLANITU for optimization of a local network with results for number of exchanges/RSUs, optimized locations and service areas, routing and dimensioning of junction network, etc. :


Optimization results – application of PLANITU for optimization of a local network with results for new exchange locations :

Optimization results – application of PLANITU for optimization of a local network with results for optimal number of exchanges, locations and service areas :

Optimization $\ results - application \ of \ PLANITU \ for optimization \ of a local network with results for routing in the network :$

Optimization results – output text results from the application of PLANITU for optimization of a local network.

Results for the total network costs and summary for number of exchanges, coordinates of the locations and service areas as subscribers quantity:

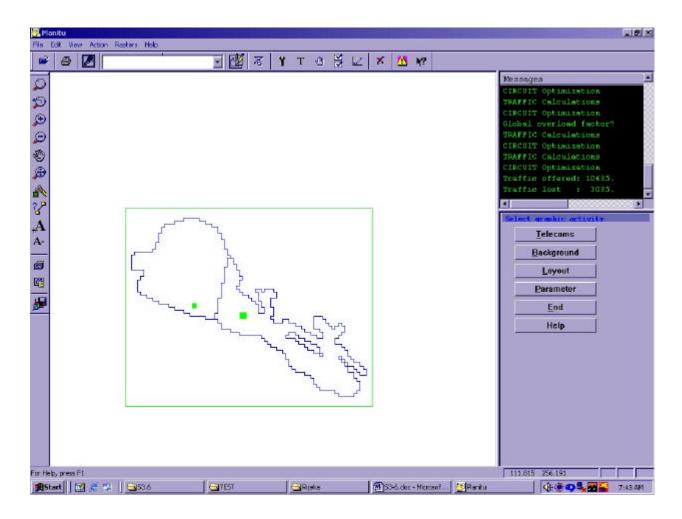
```
Total Cost of Network= 6472179.00

Cost of Subscribers = 1327214.62
    Cost of Junctions (S)= 697296.00
    Cost of Junctions (T)= 327495.56
    Cost of Exchanges = 3814172.75
    Cost of Buildings = 306000.00

No. Name X Y Tan Subs SubCost ExCost BuildCst

1 Koz SS 91.55 266.30 3 0 0. 57965. 0.
2 Koz LD 91.55 266.30 3 0 0. 69000. 0.
3 Koz T&L 91.55 266.30 0 24657 252233. 877750. 0.
4 *New* 1 87.59 267.14 3 16800 201739. 620040. 51000.
5 *New* 2 96.93 262.21 3 12142 284396. 456223. 51000.
6 *New* 3 93.24 265.10 3 19412 204951. 705714. 51000.
7 *New* 4 85.35 270.40 3 8446 201701. 334994. 51000.
```

Results for the transmission media used in the network as subscriber cables, interexchange transmission systems, etc. :


Statistics for Cables	
Cable Junction Subscriber Tota	1
Type Pairs PairKm Pairs PairKm Pairs Pa	irKm
0.4 0 0. 96413 110983. 96413 11	0983.
! 0.6 0 0. 2543 10466. 2543 1	0466.
0.8 0 0. 0 0. 0	0.
: 0.81 0 0. 0 0. 0	0.
pcm0 8760 36400. 0 0. 8760 3	6400.
pcm1 0 0. 0 0. 0	0.
'pcm2 0 0. 0 0. 0	0.
rsu 0 0. 0 0. 0	0.
fict 0 0. 79 407. 79	407.

Results for the traffic flows accumulation in the exchanges as incoming, outgoing and transiting traffics and the corresponding conversion to equipment (inter-exchange circuits):

S	tatistics	for Circ	uits &	Traffics			
Exchange		Circuits		Peal	. Traffi	Traffics	
#	Name	Inc	Outg	Inc	Outg	Transit	
1	Koz SS	150	0	98.	0.	0.	
2	Koz LD	1680	1440	1535.	1272.	0.	
3	Koz T&L	2430	2460	1806.	1779.	253.	
4	*New* 1	960	930	780.	780.	0.	
5	*New* 2	660	900	543.	747.	0.	
6	*New* 3	1020	1380	867.	1194.	0.	
7	*New* 4	510	480	398.	369.	0.	
8	*New* 5	930	870	758.	715.	0.	

Sensitivity analysis

Sensitivity analysis results – application of PLANITU for verifying of the sensitivity of the optimized network for traffic overload :

End of the case study for traffic forecasting optimization benefits and impact on solutions with the application of the PLANITU network planning tool.