

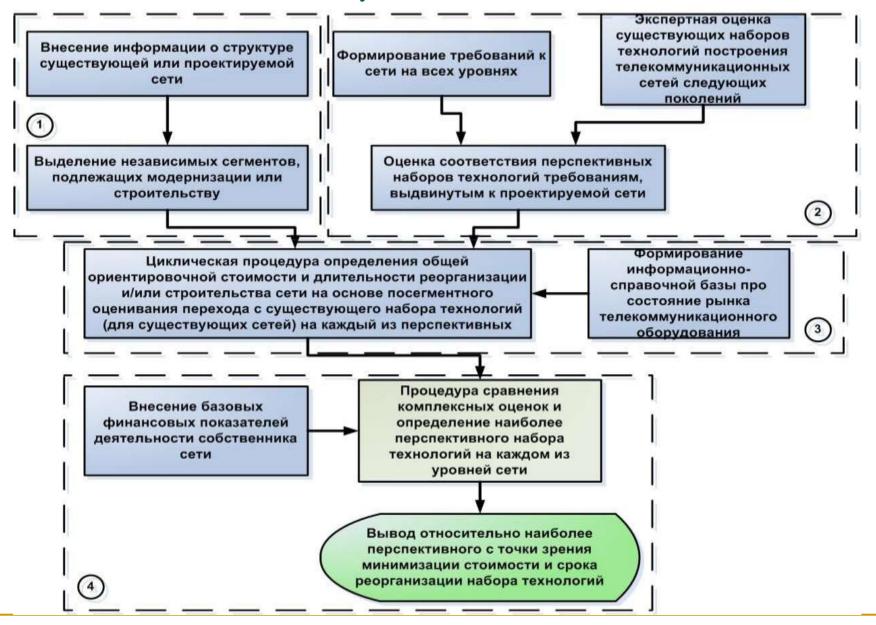
Одесская национальная академия связи им. А.С. Попова

Оценка эффективности реорганизации телекоммуникационных сетей

Каптур В.А. проректор по научной работе ОНАС им. А.С. Попова, к.т.н., с.н.с.

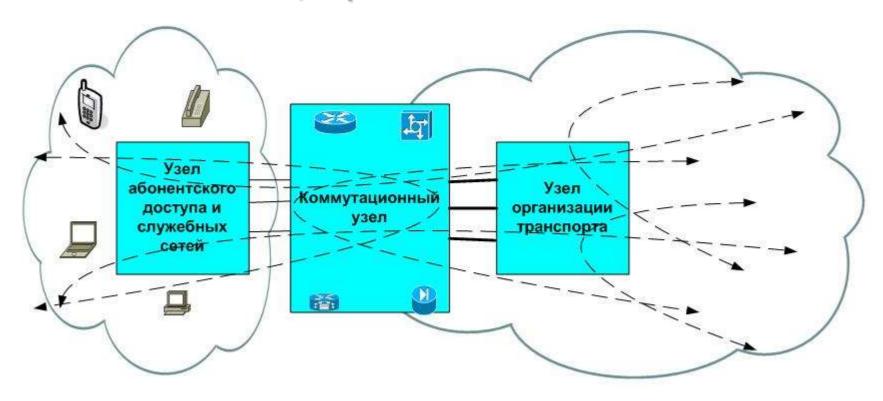
Часть 1

Методика оценки эффективности реорганизации телекоммуникационных сетей на использование перспективных технологий


Современные проблемы модернизации телекоммуникационных сетей

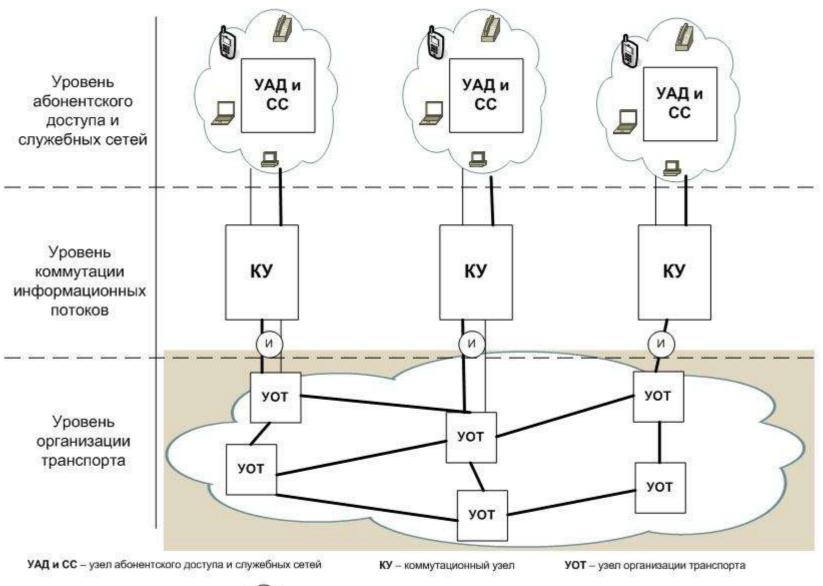
- ✓ отсутствие четких рекомендаций по проведению реорганизации телекоммуникационных сетей
- ✓ субъективный подход к выбору путей развития сети
- ✓ сложность оценивания эффективности и целесообразности реорганизации сети
- ✓ недопустимость экспериментов на действующей сети

Возможное решение:


Предоставить владельцам сетей эффективный инструмент, который позволяет выбрать перспективное направление развития собственных сетей на основании комплексного анализа эффективности реорганизации существующей сети к новым наборам технологий

Методика выбора технологических решений построения сетей последующих поколений

ОБОБЩЕННАЯ МОДЕЛЬ ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ


Узловой центр - базовый элемент сети

Назначение модели:

обособление компонентов сети друг от друга для обеспечения возможности прозрачного перехода на другие технологии в рамках одного компонента без модернизации других компонентов сети


Архитектура сетей следующих поколений

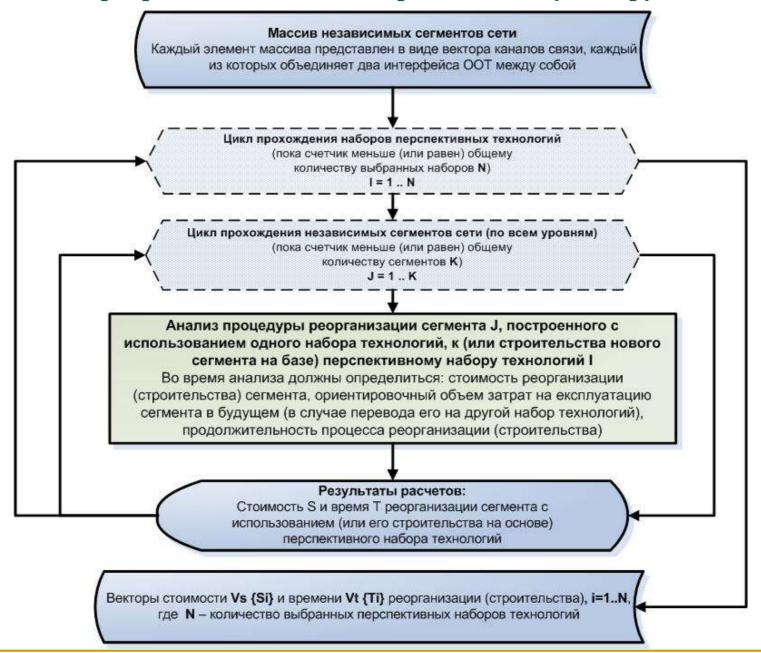
(N)

- интерфейсы взаимодействия коммутационного узла и узла организации транспорта

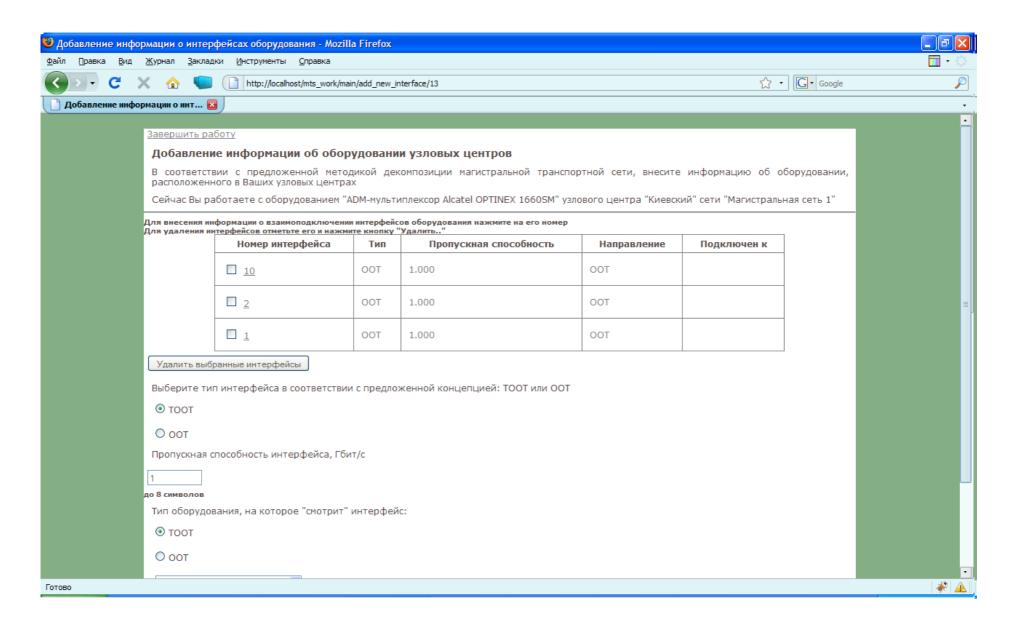
Оборудование организации транспорта (доступа) и техническое оборудование обеспечения транспорта (доступа)

Перспективные наборы технологий (на примере транспортных сетей)

- **MPLS/DWDM.(ipMPLS/SHD/DWDM)**. Под таким объединением часто понимают маркировку IP пакетов метками MPLS, с последующей инкапсуляцией в контейнеры SDH с использованием DWDM, как технологией физического уровня. Такое объединение обеспечивает гибкость управления, легкость масштабирования (MPLS) и надежную передачу данных (SDH) по каналам с большой пропускной способностью (DWDM). Это объединение примечательно также из-за минимальной модернизации существующей сети, только ее доукомплектации маршрутизаторами MPLS;
- MPLS/SDH. Аналогично предыдущему объединению технологий, только с той разницей что не используется DWDM, а SDH работает на физическом и канальном уровнях модели OSI;
- **PBB/PBT**. Технология, за основу которой взят обычный Ethernet, который был модифицирован для нужд транспортной технологии. Данное объединение перекрывает физический и канальный уровни модели OSI. Разрабатываются стандарты для 40G i 100G Ethernet, которые используют волновое мультиплексирование. Предусматривается стандартизация этих технологий на передачу данных на расстояние до 10 и 40 км, что позволит легко заменить оборудование сетей 10G Ethernet;
- **Ethernet/DWDM**. Такое объединение предусматривает инкапсуляцию пакетов Ethernet в контейнеры SDH с последующей их передачей по сети с использованием DWDM. Это объединение примечательно тем, что Ethernet трафик на данный момент самый распространенный и многие провайдеры используют такое объединение технологий для обеспечения возможности создания прозрачных для клиентов локальных сетей;
- Ethernet/SDH. Такой вариант аналогичен предыдущему, только SDH самостоятельно работает на физическом уровне;
- **NG.SDH**. Технология модернизирует и дает другую жизнь SDH. Имеется ввиду доукомплектация действующего оборудования платами расширения или использование мультиплексоров NG.SDH. Расширенные возможности технологии SDH сделали NG.SDH более ориентированной на работу с пакетными данными, что позволяет намного эффективнее использовать полосу пропускания. Для работы необходимо, чтобы мультиплексор ввода/вывода поддерживал NG.SDH, промежуточные мультиплексоры не обязательно должны поддерживать NG.SDH;
- NG.SDH/DWDM. Модификация технологии NG.SDH, которая использует технологию DWDM как технологию передачи на физическом уровне модели OSI.


Критерии оценивания (часть 1)

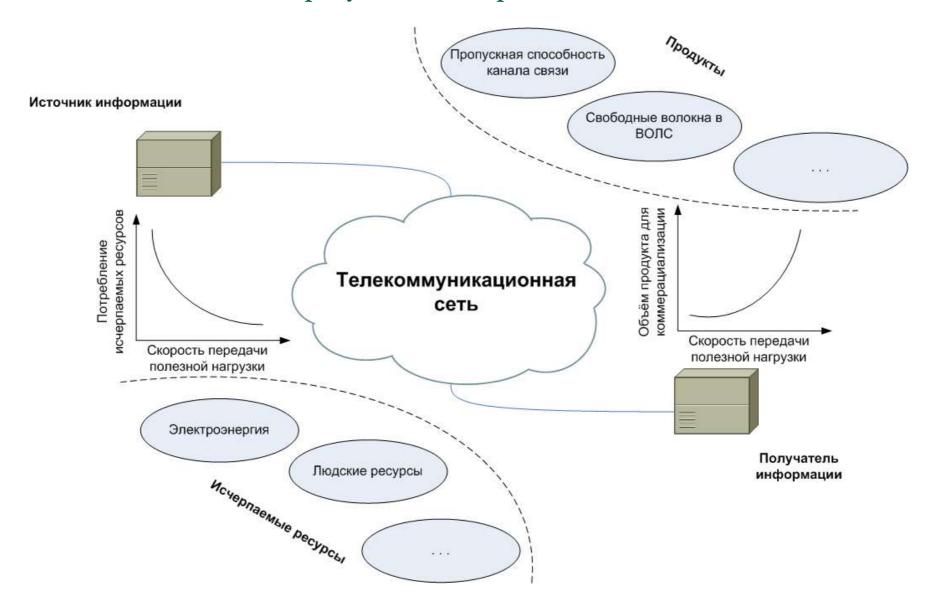
- пропускная способность канала связи критерий, определяющий максимальную пропускную способность канала связи, которая может быть достигнута при использовании той либо другой технологии (измеряется в бит/с или с помощью балльной оценки с отображением скорости на балльную шкалу);
- максимальная длина транспортного участка критерий, который используется исключительно для оценки технологий построения транспортных сетей и определяет максимальное (согласно стандарту или рекомендации) расстояние, на которое может быть организован канал связи с использованием той либо иной технологии (измеряется в км);
- **максимальное расстояние к абоненту** критерий, который используется исключительно для оценки технологий построения сетей доступа и определяет максимальное (согласно стандартам или рекомендациям) расстояние, на которое может быть организован канал связи между абонентским устройством и коммутирующим оборудованием оператора (измеряется в км.);
- **время возобновления связи** критерий, определяющий ориентировочное время возобновления связи (обновляется возможность передачи полезной информации) на участке сети, построенном с использованием той либо иной технологии, после возобновления физического канала (измеряется в мс);
- **максимальная скорость передачи полезной информации** критерий, который определяет максимально допустимую скорость передачи полезной информации (косвенно отображает избыточность), которая может быть достигнута при использовании той либо иной технологи (измеряется в Гбит/с);
- возможность управления нагрузкой критерий, который отображает поддержку той либо иной технологией механизмов управления нагрузкой в сети (гибкость маршрутизации, поддержка динамичной реконфигурации и т.д.). Может оценивать, например, с помощью балльной оценки (определяется путем экспертного оценивания или путем определения четкого соответствия того либо иного набора механизмов управления тому либо иному значению балльной оценки);
- **поддержка резервирования** критерий, который отображает поддержку той либо иной технологией механизмов резервирования каналов связи (возможность переключения в автоматическом режиме на резервное направление в случае выхода из строя основного). Может оцениваться, например, с помощью балльной оценки, которая определяется исходя из замкнутой системы значений;
- эффективность управления критерий, отображающий эффективность системы управления, используемой той либо другой технологией построения транспортной сети оператора с учетом ее типа (централизованная, распределенная, гибридная). Может оцениваться, например, с помощью балльной оценки, определяемой исходя из замкнутой системы значений:
- доступность оборудования критерий, отображающий наличие (или отсутствие) достаточно большого рынка производителей и моделей оборудования, которое может быть использовано для строительства транспортной сети с использованием той либо другой технологии. Может оцениваться с помощью балльной оценки (определяется путем экспертной оценки или путем установления четкого соответствия того или иного диапазона количества производителей оборудования тому или иному значению балльной оценки):


Критерии оценивания (часть 2)

- **доступность специалистов** критерий, отображающий наличие (или отсутствие) достаточного количества специалистов на местном рынке труда, которые могут быть задействованы для строительства, развития и текущего обслуживания оборудования той или иной технологии построения транспортной сети оператора. Может оцениваться с помощью балльной оценки определенной путем экспертного оценивания;
- **наличие готовых решений** критерий, отображающий наличие (или отсутствие) примеров реализации транспортных сетей операторов телекоммуникаций на базе той или иной технологии. Может оцениваться с помощью балльной оценки путем установления четкого соответствия того или иного диапазона внедрений тому или иному значению балльной оценки;
- уровень стандартизации критерий, отображающий уровень стандартизации той или иной технологии построения транспортных сетей. Может оцениваться с помощью балльной оценки путем установления четкого соответствия уровня стандартизации (есть принятые стандарты, регламентировано на уровне рекомендаций, существует в промежуточных вариантах и т.д.) тому или иному значению балльной оценки;
- **совместимость с видами нагрузки** критерий, отображающий совместимость той или иной технологии построения транспортных сетей с разными типами полезной нагрузки (IP-трафик, цифровые потоки Ex/Tx и т.д.). Может оцениваться с помощью балльной оценки путем установления четкого соответствия уровня совместимости тому или иному значению балльной оценки;
- **совместимость со средой передачи** критерий, отображающий совместимость той или иной технологии построения транспортных сетей с разными типами среды передачи (ВОЛС, радио эфир, медные кабели). Может оцениваться с помощью балльной оценки путем установления четкого соответствия того или иного набора сред передачи тому или иному значению балльной оценки;
- поддержка управления действиями абонента наличие возможности оборудования управлять или ограничивать действия абонента, которые могут привести к нестабильной работе сети доступа, или являются противоправными действиями. Может оцениваться с помощью схемы «да-нет», наличие возможности управления – 1, отсутствие – 0;
- **совместимость оборудования разных производителей** критерий, отображающий возможность использования оборудования, необходимого для построения транспортной сети с помощью той или иной технологии, выпускаемого разными производителями. Может оцениваться по количеству производителей, заявляющих о совместимости своего оборудования.

Оценка реорганизации сети к перспективному набору технологий

ПРОГРАММНАЯ РЕАЛИЗАЦИЯ МЕТОДИКИ


Часть 2

Оценка эффективности внедрения телекоммуникационных технологий уменьшения протокольной избыточности

Современные проблемы оценки эффективности внедрения технологий уменьшения протокольной избыточности

- ✓ неэффективность использования технологии «IP over Ethernet» в замкнутых однородных сетях
- ✓ наличие большого количества решения для предотвращения чрезмерной избыточности
- ✓ отсутствие экономической оценки целесообразности внедрения таких решений в реальных действующих сетях
- ✓ отсутствие у собственников сетей инструмента для оценки инвестиционной привлекательности использования новых изобретений
- ✓ напрасная трата ресурсов владельцем сети при наличии технологий уменьшения протокольной избыточности

Зависимость между телекоммуникационной сетью, первичными ресурсами и продуктом коммерциализации

Исходные данные для оценки эффективности перевода информационных систем на использование альтернативной платформы

Характеристики информационной системы:

- Y_{запит} интенсивность запросов создания сессии передачи информации в пределах информационной системы от одного узла, запросов/с
- L_{Інформ} средний объём полезной информации, передаваемой в пределах одной сессии от одного узла, байт
 - N_{джерел} количество узлов, выступающее источником информации
- N_{одерж} количество узлов, выступающее получателями информации (на один источник)

Характеристики сетевой среды:

- N_{вузлів} общее количество узлов в сети
- V_{ном} номинальная скорость передачи информации в сети, бит/с
- L_{кадра_макс} максимальный размер кадра канального уровня, байт
- L_{служб} размер служебной информации в кадре канального уровня, байт
- t_{паузи} размер технологической паузы между кадрами канального уровня, с

Исходные данные

Характеристики альтернативной технологии, которую планируется внедрить:

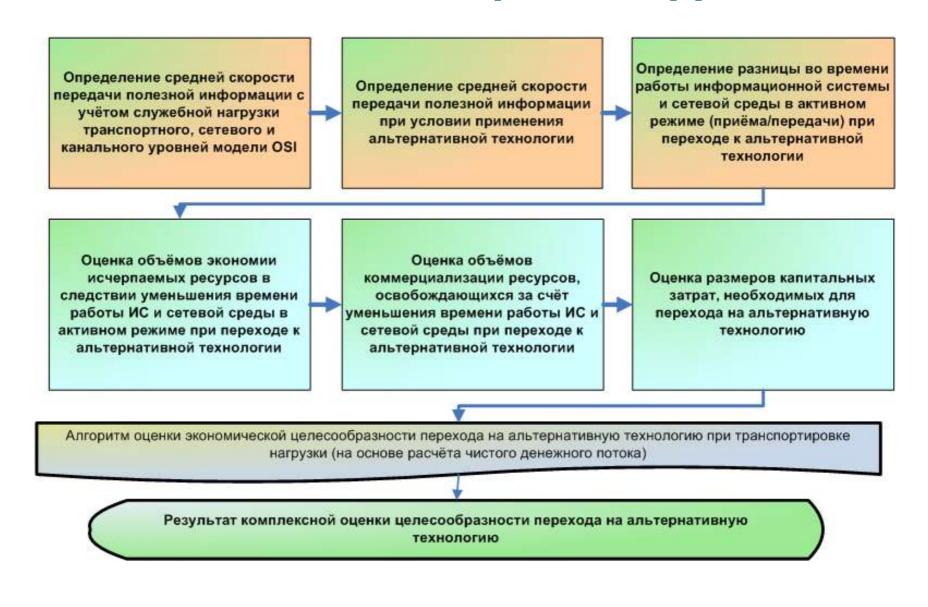
 - L_{загол-ех} – размер дополнительных заголовков (согласно спецификации технологии) на один кадр канального уровня, байт

Характеристики технологий сетевого и транспортного уровней, используемых в действующей информационной системе:

 - L_{загол-транс} — суммарный размер дополнительных заголовков на один кадр канального уровня, байт

Информация про стоимость перехода на альтернативную технологию:

- S_{придб} объём капитальных затрат, связанных с приобретением программного обеспечения, у.е.
- S_{інст} объём капитальных затрат, связанных с инсталляцией новой технологии (на один узел), у.е.
- Т_{інст} ориентировочное время инсталляции новой технологии для всей системы, часов


Информация про исчерпаемые ресурсы, используемые для обеспечения работы ИС и сети:

- Е_{акт} объём электроэнергии, потребляемой одним узлом во время приёма/передачи информации, КВатт*час
- Епасив объём электроэнергии, потребляемой одним узлом в период между сессиями, КВатт*час Емереж_акт объём электроэнергии, потребляемой активным сетевым оборудованием во время приёма/ передачи информации, Кватт*час
- Е_{мереж_пасив} объём электроэнергии, потребляемой активным сетевым оборудованием в период между сессиями, Кватт*час
- S_{електро} стоимость единицы потребления электроэнергии, у.е.

Информация про возможные продукты коммерциализации свободных ресурсов информационной системы:

- S_{варт} рыночная стоимость одного часа работы ИС (на один узел), у.е.
- К_{попиту} коэффициент спроса на услуги ИС (от 0 до 1)

Обобщённый алгоритм методики оценки эффективности перевода информационных систем на использование альтернативной платформы

Программная реализация методики

истема оцінки ефективності реорганізації існун	очих мереж на в	икористання мере	жних адрес змінного розміру		
Чихідні дані					
Характеристики інформаційної системи				еханізму)	
Інтенсивність запитів створення сесії	4.6e-005	запитів/с	Розмір додаткових заголовків технології ЕХ	4	байт
Обсяг корисної інформації за одну сесію	20000000000000	байт	Розмір додаткових заголовків існуючої технології	40	байт
Кількість вузлів, що можуть виступати джерелом	100				
Кількість вузлів, що виступають одержувачами	10		Інформація про вичерпні ресурси Обсяг електроенергії, що споживається вузлом в АР	0.0001	КВатт*год
Характеристики мережного середовища			Обсяг електроенергії, що споживається вузлом в ПР	5e-005	КВатт*год
Кількість вузлів в мережі	1000		Обсяг електроенергії, що споживається МО в АР	0.0004	КВатт*год
Специфікація технології Ethernet	100BASE-TX	•		0.0001	КВатт*год
Номінальна швидкість передавання інформації	100000000	біт/с	Обсяг електроенергії, що споживається МО в ПР	1.00272	
Максимальний розмір кадру канального рівня	1526	байт	Вартість одиниці споживання електроживлення	1.00272	грн
Розмір службової інформації в кадрі	26		Пнформація про можливі продукти комерціалізації————————————————————————————————————	1.1	
		байт	Ринкова вартість однієї години роботи IC (за вузол)	1.1	грн
Розмір технологічної паузи між кадрами	0.96	MKC	Коефіцієнт попиту на послуги ІС (від 0 до 1)	0.3	
Інформація про вартість переходу на ЕХ			Нормативні показники		
Обсяг капітальних витрат на придбання ПЗ	48000	грн	Бажаний період окупності	3	років
Обсяг капітальних витрат на інсталяцією ПЗ (на вузо	л) <mark>80</mark>	грн	Ставка дисконтування (від 0 до 1)	0.11	
Орієнтовний час інсталяції нової технології	3600	С	Чинна ставка податку на прибуток (від 0 до 1)	0.2	
Оцінка доцільності	гозрахунок доціл	ъного розміру адрес	Розрахунок обсягу інформаційного обміну	Sa	ve Result
езультати розрахунків					
Название параметра			Значение		
Максимальна інтенстивність передавання кадрів, кадрів/с Швидкість передавання корисної інформації чинним стеком, біт/с			8127 94928478.560118		
Швидкість передавання корисної інформації стеком Е			97269180.771190		
Різниця (виграш) у часі на одну сесію за рахунок використання ЕХ, с Обсяг заощадженої за одну сесію передавання даних електроенергії, КВатт*год			4055 204.015120		
оося: заощадженог за одну сесью передавання даних електроенергії, кватт тод Річний обсяг заощадження електроенергії, Кватт*год			295955.757536		
Розмір щорічних витрат (можливий обсяг заощадженн	я коштів), грн	296760.757196			
Обсяг потенційної комерціалізації ресурсів, грн			53934.949185		
Загальний обсяг інвестицій в перехід до нової техноло	гії, грн		128330.000020		
Розмір чистого прибутку, грн			280556.564060		▼

Программная реализация методики

ИСХОДНЫЕ ДАННЫЕ

Интенсивность запросов создания сессии, запросов/с: 0.000046 Объём полезной нагрузки на одну сессию, байт: 200000000000

Количество источников: 100

Коливество получателей на один источник: 10

Количество узлов в сети: 1000

Технология канального уровня: Ethernet 100BASE-TX

Номинальная скорость передачи информации, бит/с: 100000000

Максимальный размер кадра канального уровня, байт: 1526

Размер служебной информации в кадре, байт: 26

Размер технологической паузы между кадрами, мкс: 0.960000

Объём капитальных затрат на приобретение ПО, у.е.: 6000

Объём капитальных затрат на инсталляцию (на один узел), у.е.: 10

Ориентировочное время инсталляции новой технологии, с: 3600

Размер дополнительных заголовков в альтернативной технологии, байт: 4

Размер дополнительных заголовков в существующей технологии, байт: 40

Объём электроэнергии, потребляемой узлом в активном режиме (АР), Кватт*час: 0.0001

Объём электроэнергии, потребляемой узлом в пассивном режиме (ПР), Кватт*час: 0.00005

Объём электроэнергии, потребляемой сетевым оборудованием в АР, Кватт*час: 0.0004

Объём электроэнергии, потребляемой сетевым оборудованием в ПР, Кватт*час: 0.0001

Стоимость единицы потребления электроэнергии: 0,12 у.е.

Рыночная стоимость одного часа работы информационной системы (за узел), у.е.: 0,13 у.е.

Коэффициент спроса на услуги информационной системы (от 0 до 1): 0.3

Желаемый период окупаемости, лет: 3

Ставка дисконтирования (от 0 до 1): 0.11

Действующая ставка налога на прибыль (от 0 до 1): 0.2

Программная реализация методики

РЕЗУЛЬТАТЫ РАСЧЁТОВ

Максимальная интенсивность передачи кадров, кадров/с: 8127

Скорость передачи полезной нагрузки существующей технологией, бит/с: 94928478

Скорость передачи полезной нагрузки альтернативной технологией, бит/с : 97269180

Разница (выигрыш) во времени на одну сессию, с: 4055

Объём сэкономленной за одну сессию электроэнергии, КВатт*час: 204

Годовой объём экономии электроэнергии, КВатт*час: 295955

Возможный размер ежегодной экономии, у.е.: 37095

Объём потенциальной коммерциализации ресурсов, у.е.: 6742

Общий объём инвестиций в переход на альтернативную технологию, у.е.: 16000

Размер чистой прибыли, у.е.: 35070

Значение чистого денежного потока: 85700

NPV, y.e.: +69658

Оценка целесообразности перехода на использование альтернативной технологии:

ЦЕЛЕСООБРАЗНО

Благодарю за внимание!