e-Health in Japan
Introduction of Telemedical Care System
—Body Area Network (BAN) at NICT

October 2011
Hachihei KUREMATSU
(kurematsu@nict.go.jp)

Expert, Planning Office,
NICT Wireless Network Research Institute
Background

- Percentage of total population **aged 65 years or older** in Japan is world’s top in 2010. (Japan: 23.1%, Thailand: 7 %)

- **Healthcare cost** to GDP is increasing. (Japan: >9%)

- **Earthquake and Tsunami produced** —
 - Huge number of **displaced persons** (>100,000),
 - Serious **doctor shortage** in damaged area, and
 - Strong demand of healthcare and environmental monitoring not only for **residents**, but also for **workers for clearing debris and nuclear plant recovery**.
Advanced Wireless ICT as a Support for Medical Treatment & Healthcare

Declining Birthrate and Aging Population

Increasing need for nursing,
Increasing amount of necessary medical budget
Decreasing labor force, Insufficiency of nurses, Increasing insurance costs

Medical Assistance
Enhances medical standard
Reduces burden in medical care
Prevention of Plagues
Saves medical cost by disease prevention

Less Burden on Nurses
Assistance for the limited number of nurses

Ubiquitous Medicine by Advanced Wireless ICT
Improved efficiency
Budget Saving
Improved accessibility
Reduced Incidents

Management of Medical Supplies
Prevention of medical malpractice
Rehabilitation Assistance
Effective assistance in rehabilitation and for disabilities
Nursing Assistance
Reduces nursing costs
Secured daily lives

In order to solve these problems...
Wearable Vital Sensors

- Five wearable sensors for diseases
 - Electrocardiograph
 - Blood pressure
 - Breath
 - Percutaneous oxygen saturation (SpO2)
 - 3D-axes acceleration

<table>
<thead>
<tr>
<th>Disease & condition</th>
<th>ECG</th>
<th>Blood pressure</th>
<th>Breath</th>
<th>SpO2</th>
<th>3D Accel.</th>
<th>Related department of diagnosis and treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>High blood pressure (related to cerebral infarction, apoplexy, kidney disease, and diabetic)</td>
<td>△</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>Internal medicine Circulatory organs</td>
</tr>
<tr>
<td>Heart disease</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>△</td>
<td>△</td>
<td>Internal medicine Circulatory organs</td>
</tr>
<tr>
<td>Sleep apnea syndrome (SAS)</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>Respiratory Medicine Otolaryngology Circulatory organs Internal medicine</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease (COPD)</td>
<td>△</td>
<td>△</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>Respiratory Medicine</td>
</tr>
</tbody>
</table>

〇: Required, △: Better

From Dr. Yamasue, Medical School, Yokohama City University
What are features of Wireless Body Area Network?

- **A wireless sensor networking** technology optimized for low power devices and operation on, in or around human body

Features:

(a) Wireless coverage: around 2-3 meters, corresponds to body size

(b) High reliability and secure communications, to protect personal information

(c) Specific absorption rate (SAR) should be considered to lower thermal influence to body

(d) Low power consumption, for long battery use

Source: IEEE802.15.6
BAN: Target Position

Ref. Doc.: IEEE802-15-06-0046-00-wng0
(II) Assistance to people with disabilities
 • Visual disability
 • Speech disability
 • Artificial hands, legs

(III) Body interaction and entertainment
 • Wireless headphone
 • Wireless game

(I) Health Care Service
 • Medical check-up
 • Physical rehabilitation applications
 • Physiological monitoring
Other Application Examples

Remote control of medical devices
Insulin pump

Fitness monitoring
Pacing information etc.

Wearable audio and video
Collaborative function

Disability assistance
Muscle tension sensing and stimulation

Implantable sensor
www.microstrain.com

Animal applications
Health monitor and infectious disease control in early phase, e.g. bird flu
UWB-BAN Prototypes

UWB high-band (7.25-10.25GHz, -41.3 dBm/MHz)
IEEE802.15.6 MAC (TDMA)
Pulse rate=50M pps

Body temp.
Three-axis accelerater
(for detection of stumbling/falling)

Blood pressure

Hub/PC monitor
real-time monitor of sensor data by values, curves, and voice
Control of the sensor terminals

SpO2 and pulse
(optical sensor in fingerstall)

Voice
(for nurse call)

Weight

Electrocardiogram
(three-electrode sensor)
UWB BAN to Support People with Visual Disabilities

Application image

Prototype units

- World-common UWB high-band is used:
 - Center freq. ~8GHz, BW ~500MHz, TX power < -41.3dBm/MHz.
- Advantage of UWB:
 - Low interaction to human body by low power density
 - Low power consumption
Telemedicine Support System

- Actively constructs an in-hospital WLAN and efficiently uses public wireless broadband networks
- Information of patients collected by biosensors, IP cameras, etc. are shared among hospitals at remote locations, supporting the practice of telemedicine. (remote control of devices such as IP cameras is also possible)
Sensor node product (Micro Medical Device, Japan)

- Dimensions 40 x 35 x 7.2 (mm) (±2) Including a battery
- Weight: 12 g
- Material ABS Resin (Plastic) Safe to human body
- Electric wave 2.4 GHz band low power data communication system
- Transmitting frequency 2404 MHz to 2429 MHz, 5 MHz interval, 5 waves.
- Transmitting power 1 mW (0 dbm)
- Data transmitting rate 1 Mbps
- Power consumption 2.5 mA in action
- Communication distance 20 m
- Duration of continuous operation 48 hours
 (120 hours for measuring ECG only)
 25°C, varied depend on environment

The product includes
ECG, 3D motion sensor and temperature sensor
Realization of Wide Range Sensor Network with Automatic Detection & Alert Function

【Features】
- The combination of the existing cell phone network and “Wireless Mesh Network” will enable a wide range sensor network.
- Wireless Mesh Routers (WMR) employ Linux-based system, which provides an environment that can be customized by users.
- Because WMRs can be used as access points for wireless LANs, it will be possible to achieve a simultaneous operation between various sensors and IP cameras. They can also be used to invent such application systems that show the information from sensors at wireless LAN terminals.

WMR Example:
- Cooperation between Sensors and Cameras
 Adjustment of the frame rate and storing pictures from IP cameras that cooperate with sensors.

WMR Example:
- Sensor Server Function
 WMRs can be equipped with various additional functions, such as GW function for various sensor networks, sensor server function, logging of sensor data, alert function, etc.

Various Physiological Sensors Technology invented by NICT

Physiological Sensor Networks Technology invented by NICT

The Center of Control
- Electrocardiograph shown on a wireless LAN terminal
- WMRs alert the users.
Transmission Image of FHR Information

FHR; Fetal Heart Rate

1. Mobile CTG (fetal heart rate, uterine contraction)
2. The measurement length is arbitrarily set:
 60 minutes of 40 minutes of 20 minutes.
3. When the data transmission button is pushed,
 the acquisition data is automatically sent off to
 the data center.
4. It is also possible to see the graph of the acquisition data
 in a mobile CTG monitor.

The doctor in charge can monitor the FHR data outside
hospital using cellphone.
The network of perinatal telemedicine

Mobile CTG Monitor

MC—711

This unit is intended to manage high-risk pregnant women at home.
Measuring the fetal heart rate and maternal contractions in pregnant women at home. This device sends measurement data to the CTG server by FOMA.
The doctor can see measurement data on the PC or mobile phones through the Internet.

Specifications
Measurement: monitoring fetal heart rate and labor
Display: LCD display with touch panel
External Interface: FOMA card
Dimensions: 240 (W) × 180 (H) × 90 (D) mm
Weight: 2.0kg
Power: AC100V 50/60Hz 55VA
The network of perinatal telemedicine

- The Perinatal Electronic Medical Records is used for the pregnant mother and her baby.
- It enables sharing of medical information among multiple facilities through the internet.

- It enables you to send fetal heart rate data and the pains of childbirth by mobile phone at home.
- Doctors can check the fetal growth graph by using their mobile phone.

HELLO BABY PROGRAM

The Perinatal Electronic Medical Records

- Medical exam picture
- Hospitalization delivery screen
Home Monitoring System for Pregnant Woman

Pregnant Woman talking with Obstetrician through TV meeting system

Mobile CTG (Cardio TocoGram)
The network of perinatal telemedicine

How to operate the Telemedicine System

Home

By FOMA

The fetal heart rate
Remote delivery system
Send data of the Fetal heart rate

Clinic

midwife

Web-electronic medical records

Hospital

sharing medical information

server
doctor

Web-electronic medical records

Perinatal Electronic Medical Records screen on WEB ver.

Fetal heart rate table screen

- The time scale on the display table can be changed. It supports noise canceling for background noises
- You can print-out above data by clicking a button
3) Functional integration with the Kagawa-Medical Internet Exchange:

In Kagawa Prefecture, the K-MIX (Kagawa-Medical Internet Exchange, an epoch-making image center project on remote medicine has been operating since June 2000. We will integrate and strengthen the functions of the Kagawa Perinatal Network and the K-MIX. (http://www.m-ix.jp/)
Health Advice via Video Telephone Application

Before

- Home care checkup support
- Real-time consultation and guidance when nurses visit
- Follow-up for chronic invalid
- Following and remote guidance advice after health examinations
- Teleconference system of large areas among doctors
- Consultation of administering and guidance among doctors and pharmacists
- Side effect prevention of administering medication treatment

After

Merits

Demerits
- Can’t see face to face
- Can’t administer face to face
- No remuneration
Damage of Cellular Networks upon the Great East Japan Earthquake

- Powerful quake
- Giant tsunami
- Nuclear plant accident

- Cellular base stations: max. 14,000 stations went to OOS on the day after the shock (breakdown in system and power)
- Call traffic increased to 50～60 times.
 → Operators decided on call restriction at max. 90%
- Wired networks were entirely destroyed.

Not only the civilians, but also government staffs, rescue teams, medical staffs, and staffs related to lifelines got into blackout in communication.

First response for post disaster activities was significantly delayed.

Too much trust should not placed on cellular networks in emergency. Then, what should we do?
Struck situation of Miyagi Prefecture (Onagawa and Oshika peninsula)

Onagawa established by the town hospital

Onagawa fishing port

From Yoreisohama of the Oshika peninsula

Toles and pebbles of Yoreisohama 2011,05,27
Integrated Network Design including WBAN and Other Access Networks

- Vital sensors
 - Electrocardiogram
 - Pulse count
 - SpO2
 - Body Temp.
 - Motion measurement

- Data transmission by cellular, LAN/Internet, etc.

- Coordinators/Terminals
 - Shelters
 - Temporary housings
 - Nuclear plant etc.

- Hospitals/Medical centers

- Environmental sensors

- Are they really always reliable?
Remote Health and Environmental Monitoring Using 400 MHz-WBAN

- More stable in propagation around human body in 400MHz band than in 2.4GHz band.
- Suitable for narrow band remote health monitor
- Single hop communication distance ~20m
- Larger coverage expected with multi-hop scheme
Concluding Remarks

• According to population aging, **WBAN technology will play an important role** in terms of market for industry and new R&D paradigm for academia

• NICT is focusing on **UWB and narrow-band 400 MHz WBAN** for health and environmental monitoring applications. These applications also play **significant roles in disaster recovery activities**.

• NICT is **one of main contributors for IEEE802.15.6**, PHY and MAC standardization of BAN - refer to IEEE802.15 web-site

We look forward to keep a good relationship with your countries in the area of BAN and other wireless technologies.