July 15, 2008 ITU Regional Cybersecurity Forum (Brisbane, AU) Ms. Seong-Weon Hwang(hsw@kisa.or.kr) ### Table of Contents Outline of the Research National Information Security Index **III** Future Work # Background - **OECD, ITU and other international organizations regularly announce information society index to utilize in establishing and evaluating information policies.** - Information society index is utilized as important data for countries to evaluate their information policy performance and select future projects. #### **Networked Readiness Index, WEF** - ex. The Networked Readiness Index(NRI) of WEF(World Economic Forum) measures level of ICT usage - contribute countries economic development and gain competitive advantage # **Need for Security Index** **Need for Information Security Index:** - **To analyze the current level of the internet security** - **6** To support the government to develop National IT security policies - Lack of generally accepted measuring standards # **Expected Effects** ### We expect these effects: - Selecting priority order of policy setting and increasing the trust in budget assignment - Providing the policymakers the guidelines to make decisions - **19** Improving the awareness of information security ## Limitations of NISI - First, it is difficult to ensure the establishment of a unified concept of information security phenomena. - Second, it is difficult to select appropriate components that represent information security phenomena. - Third, there is an absolute lack of statistical data, and the reliability of surveyed statistical data is problematic. ### What is NISI? - Information security index is a figure to express the characteristics of a particular group's information security the most clearly - It can be utilized in determining information security policies together, with various statistical data. ## NISI Framework ## NISI Structure | Area | Category 1 | Category 2 | Components | |---|------------------------------------|--------------------------------|---| | The Level of National
Information Security
Infrastructure | Security
Infrastructure | IT Security
Countermeasures | Firewall Usage Rate | | | | | IDS Usage Rate | | | | | Anti-virus Vaccine Usage Rate | | | | | Apply Rate of Software Patch | | | | | Rate of Secure Servers per Population | | | | | Laws and Legislations | | | | IT Security System | Rate of IT Security Certified Organizations | | | Security
Environment | TO C | Rate of National Budget on IT Security | | | | IT Security Investment | IT Security Investment Rate | | | | IT Security Education | Rate of IT Security Expert | | | | | Security Awareness of Citizens | | | | | IT Security Education Introduction Rate | | The Level of the
Side-Effects of the
Information Society | Index for Mali
cious Activities | Malicious Activities | Leakage Rate of
Individual Information | | | | | Rate of Organizations Facing
Security Problems | | | | | Rate of Facing Computer Virus | | | | | Rate of Bot Affected PC | # Sample of Measurement - 1 | Item | Anti-virus penetration rate | | | | | |------------|--|--|--|--|--| | Definition | program that stop the function or remove a computer virus program | | | | | | Model | The Number of Anti-virus user The Number of Internet user | | | | | | Importance | - Measurement of Anti-virus usage
- Grasping of individual information security level | | | | | # Sample of Measurement - 2 | Item | Firewall penetration rate | | | | | |------------|---|--|--|--|--| | Definition | computer system that automatically prevents an unauthorized person from access to a computer when connected to a network such as the Internet | | | | | | Model | The number of company using Firewall The number of companies * 100 | | | | | | Importance | - Measurement of Firewall usage
- Grasping of information security level | | | | | # Sample of Measurement - 3 | Item | The rate of specialized information security expert | | | | | |------------|---|--|--|--|--| | Definition | The rate of employee at the companies related to information security business | | | | | | Model | The number of Information security expert The number of Information-oriented expert | | | | | | Importance | - It is manpower to keep and to develop national information security level - Grasping of how many these people country have. | | | | | ## NISI Generating Process #### 12 Low-level Indices Firewall IDS Anti-virus Software Software Patch Secure Server **Accredited Certificate** **IS Awareness** **IS Manpower** IS Budget Security Breaches **Privacy Intrusion** **Internet Telephony** 3 Component Indices **Security Effort Index** Security Awareness Index Malicious Activity Index Merged Index National Information Security Index Direct Calculations from the Data Applying weights and adjustment factors to the low-level indices Applying the index generating function to the component indices ## NISI Generating Function (1) Information security level index: H = T + EDysfunction Index: N T =social effort for the information security society E = information security environment N =side-effect of information society ## NISI Generating Function (2) #### Integration of Indicates at Each Stage | Description | | | | | | | | | |--|--------------------------------|--|-----------------------------|---|---|--|--|--| | 1st stage | 2nd stage
(middle category) | | 3rd stage
(low category) | | | | | | | Total
index | Weighted
value | Item | Weighted
value | Adjustment
factor | Item | | | | | Information
security
level
(H) | w _t i | Information
security base
index
(T) | w_{tII} | α_{II} | Vaccine penetration rate
t11 | | | | | | | | w ₁₁₂ | α_{I2} | Patch penetration rate
t12 | | | | | | | | w _{t13} | $\alpha_{{\scriptscriptstyle I}{\scriptscriptstyle S}}$ | PKI penetration rate
t13 | | | | | | | | w ₁₁₄ | α_{14} | Firewall penetration rate
t14 | | | | | | | | w _{t15} | $\alpha_{\scriptscriptstyle IS}$ | IDS penetration rate
t15 | | | | | | | | w _{tI6} | α_{I6} | Security server
penetration rate
t16 | | | | | | W _e j | Information
security
environmental
index
(E) | w _{ell} | eta_{II} | The ratio of information
security-related budget
e11 | | | | | | | | w _{e12} | β_{II} | The ratio of specialized information security manpower el 2 | | | | | | | | w _{e13} | eta_{II} | The ratio of the people's security awareness level e13 | | | | | Information
dysfunction
level
(N) | w _{ni} | Information
dysfunction
index
(N) | w_{nll} | δ_{II} | The ratio of hacking and virus reports n1 [| | | | | | | | w _{n12} | δ_{I2} | The ratio of private information intrusion reports fil 2 | | | | | | | | w_{nl3} | δ_{I3} | The ratio of spam mail
receipt
n13 | | | | $$H=\omega_{1}T+\omega_{el}E$$ s.t. $\omega_{11}+\omega_{el}=1$, $\omega_{1}=\omega_{el}$ $$T=\omega_{11}\alpha_{11}d1+\omega_{12}\alpha_{12}d2+\omega_{13}\alpha_{13}d3+\omega_{14}\alpha_{14}d4+\omega_{15}\alpha_{15}d5+\omega_{16}\alpha_{16}d6$$ s.t. $\omega_{11}+\omega_{12}+\omega_{13}+\omega_{14}+\omega_{15}+\omega_{16}=1$, $$\omega_{11}=\omega_{12}=\omega_{13}=\omega_{14}=\omega_{15}=\omega_{16}$$ $$E=\omega_{ell}\beta_{11}el1+\omega_{el2}\beta_{12}el2+\omega_{el3}\beta_{13}el3$$ s.t. $\omega_{ell}+\omega_{el2}+\omega_{el3}=1$, $\omega_{ell}=\omega_{el2}=\omega_{el3}$ $$N=\omega_{11}\beta_{11}d1+\omega_{12}\beta_{12}d2+\omega_{13}\beta_{13}d3$$ s.t. $\omega_{ell}+\omega_{el2}+\omega_{el3}=1$, $\omega_{ell}=\omega_{el2}=\omega_{el3}$ s.t. $\omega_{ell}+\omega_{el2}+\omega_{el3}=1$, $\omega_{ell}=\omega_{el2}=\omega_{el3}$ ### **Future Work** - **OUNCE** KISA Trying to improve NISI (2008) - **©** Co-work with KISA-ITU expert group('08~) - **®** Development of Information Security Index