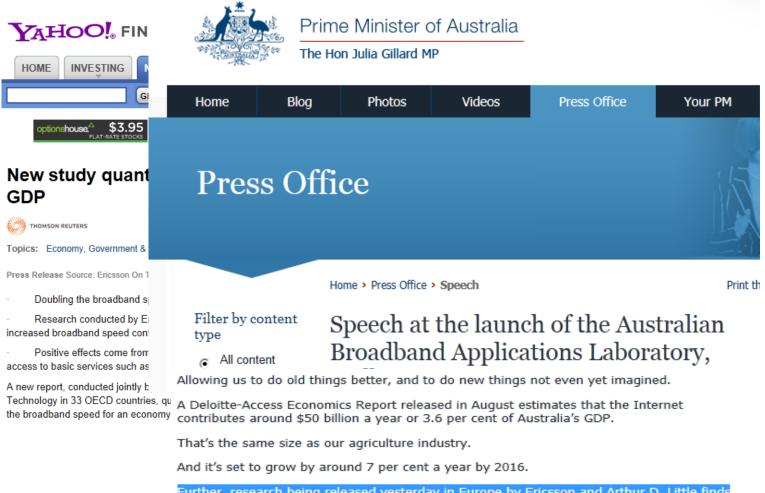


Broadband speed impact on GDP growth and household income:

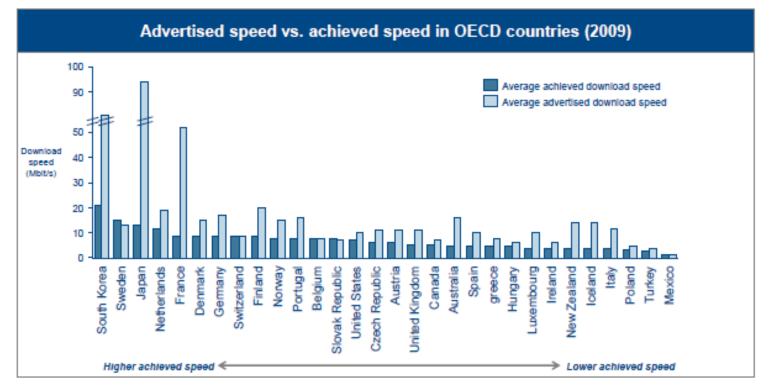
Comparing OECD and BRIC

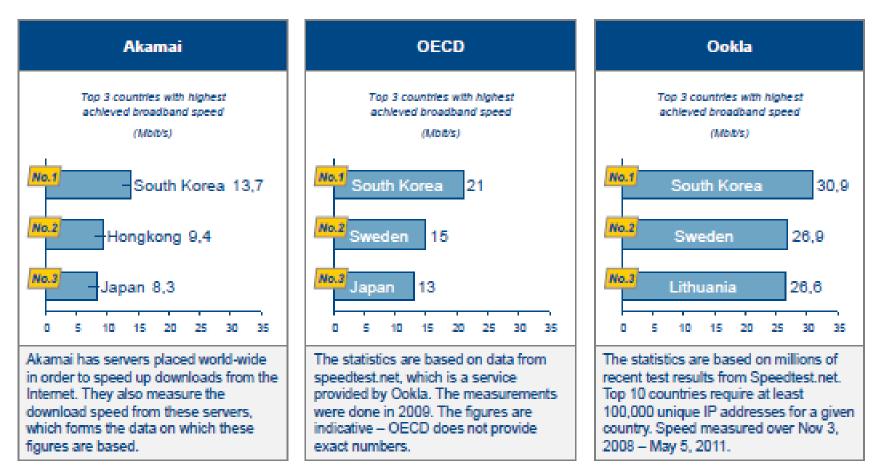

Erik Bohlin Chalmers University of Technology

Presented for the ITU Workshop: New Trends for Building and Financing Broadband: Policies and Economies 24-25 September 2013 Manama, Bahrain

Two studies: Macro and Micro

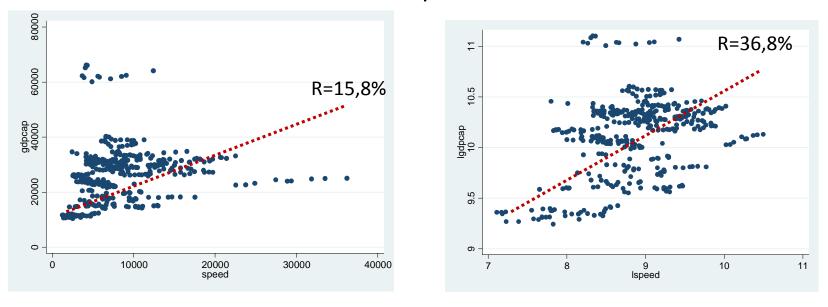
- Collaboration between LM Ericsson, Arthur D. Little and Chalmers University of Technology
- Macro study released in 2011 scientific publication: Rohman, I.K., and Bohlin.E. (2012). Does broadband speed really matter as a driver of economic growth? Investigating OECD countries. *Int. J. of Management and Network Economics, 2*(4), 336-356
- Micro study released in 2013 scientific paper: Rohman, I.K., and Bohlin.E. (2013). Impact of broadband speed on household income: Comparing OECD and BRIC, paper to be presented at 41st Annual TPRC, Washington D.C, Sept 27-29, 2013


The GDP study: Press clips


Further, research being released yesterday in Europe by Ericsson and Arthur D. Little finds that every doubling of broadband speed increases GDP by 0.3%

To put this into perspective; the basic service offered under the NEN has a speed of 12 mega bits per second - significantly faster than the 1 to 5 mbps speeds most Australians experience today.

What speed should be measured?



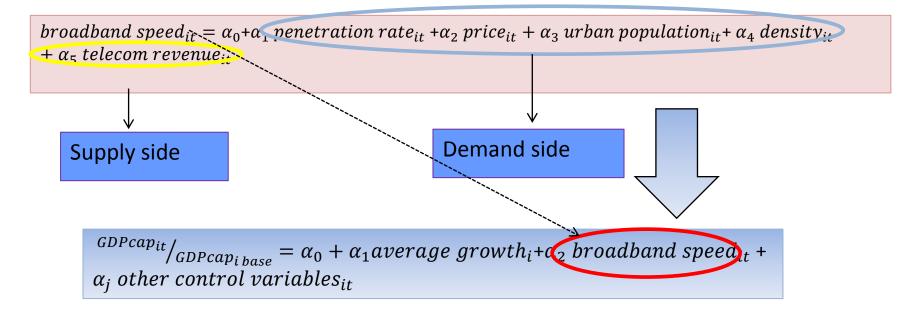
Significant variation in measuring achieved speed

Source: State of the Internet, Akamal. Next Generation Connectivity, OECD. Ookia's netindex.com, accessed on May 6, 2011.

Descriptive statistics : correlation between speed and GDP per capita

(1) Level (correlation = 0.158)

(2) Growth rate-in the log forms (correlation = 0.368)


The relationship between GDP per capita and broadband speed is more visible in the log forms (growth) in the right hand figure, with higher correlation between two variables.

Description of the model

	Model for estimating GDP effect of broadband speed upgrades
Model type	Static panel data regression
Source of framework	Lehr et. al. (2005), Koutrompis (2005), Shiu and Lam (2008)
Empirical framework	Two stage fixed effect panel data
Number of observations	33 OECD countries
Time series	3 years (12 quarters)
Dependent variable	■ GDP/capita (OECD)
Independent variables	Quarterly data on average achieved broadband downlink speed (Ookla)
Control variables (independent)	 Fixed broadband penetration rate Average broadband subscription price (USD PPP) Graduates from upper secondary education or higher Telecommunication revenue in millions of US dollars (PPP) Population density

The impact of speed to GDP

(model adopted from Lehr, 2005)

- Both equations are in the log forms, the coefficient reflects the elasticity.
 - Control variables in equation 1 –broadband speed equation- (broadband penetration rate, broadband subscription price, urban density, proportion of urban population, and telecom revenue)
 - Control variables in equation 2 –main equation-(urban density, proportion of urban population, labor force, proportion of tertiary education, population),

Results

Model 1 (Macro level) – Impact on percentage GDP growth compared to base year (2008)			
Independent variables	Coefficient		
Average GDP growth (2008-2010)	0,577	*	
Population density	-0,0441	*	
Urban population	-0,0103	**	
Labour force growth (%)	0,483	*	
Telecom revenue growth (%)	0,0492	*	
Population growth (%)	-0,630	**	
Average achieved downlink speed	-0,00214		
Average achieved downlink speed squared	0,00142	*	
Notes			
*	p-value < 0.01		
**	<i>p-value</i> < 0.05		

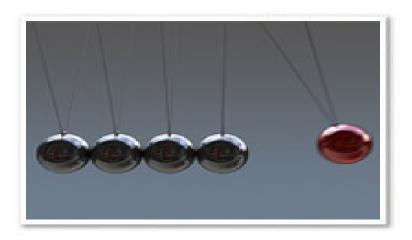
Interpretation of macro results (1)

- The estimated coefficient is the **squared average achieved downlink speed**, with the value of 0,0014
 - The result is highly significant (p<0.01) and the model is robust to changes in control variables.
 - Hausman test confirms the fixed effects regression as the best model (in comparison to the random effect)
 - Durbin-Wu-Hausman (DWH) test confirms the successful isolation of the independent impact from speed to GDP (not influenced by reversed causality), hence no endogeneity in the result on most levels of significance.
- The coefficient can be translated into an elasticity measurement, with elasticity values evaluated at the sample mean.
 Such an elasticity measurement is on the form:

2*coefficient=2*0.00142%=0.00284%

 \approx 0,003% additional GDP mean growth from base year (2008) by 1% higher mean speed

(the result is significant at log x square and derived accordingly)


Interpretation of macro results (2)

- The size of the coefficient is more readily understood in the context of a doubling of the average speed, i.e. an increase by 100%
- The sample mean is **8.3 mbps,** hence **16.6 mbps** for 100% increase
- If the speed level is doubled, the impact to GDP growth is 100*0.003= 0.3% (relative to the growth in 2008)
- As an example, if the overall economic growth in 2008 is 2%, then the hypothetical *isolated* impact from doubling the speed level on growth would be: 2%+0,3%=2.3%.
- The hypothetical impact will depend on:
 - The size of beta (coefficient of speed)
 - The existing economic growth in each country
 - As the impact is modeled as linear, it needs to be judiciously applied when a hypothetical country growth is far away from sample means
- The hypothetical impact is based on an elasticity measurement and any forward-looking simulation should be applied with care

The household study

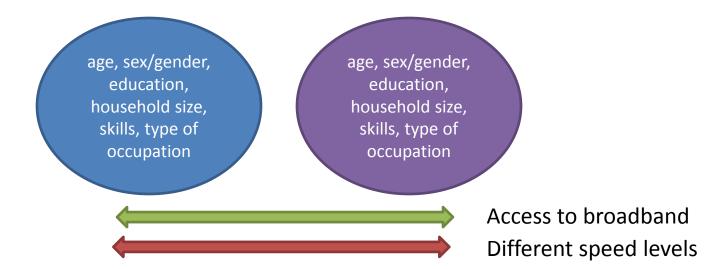
Method Treatment effect

- In many areas there are interests to investigate the effect of treatment/cause in a model called *treatment effect*.
 - − Drug \rightarrow illness
 - Educational program \rightarrow academic achievement
 - Economic policy \rightarrow GDP
- Once the effect is found, policy makers can adjust and intervene the treatment to obtain a desired level of response.

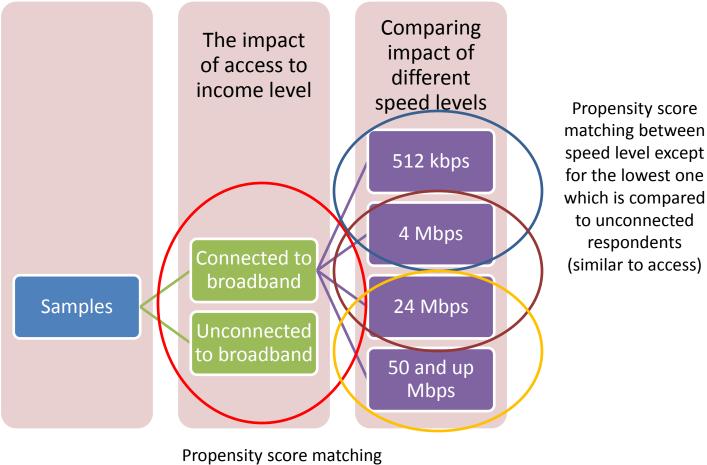
Starting point

What might influence the level of **personal/ household income ?**

- Gender
- Ages
- Education
- Geographical location
- Type of occupation



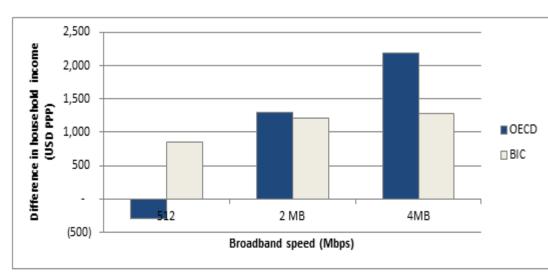
- Number of households member
- Skills
- Prior assets ownership


Propensity Score matching

The method controls for the possible factors that contribute to income (age, sex/gender, education, household size, skills, type of occupation, etc)

The only difference between the two samples is (i) the access to the broadband, for access impact, and (ii) the different level of broadband speed, for speed impact assessment.

Access and speed investigation

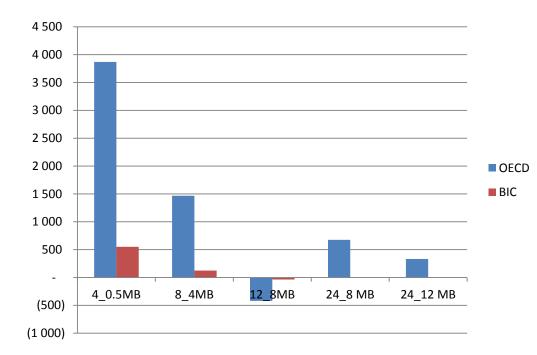


Propensity score matching between connected and unconnected <u>households</u> to broadband

Framework of the model

Source	Туре	Data	Description
			Median of income class, the span of class varies between countries. The
	Dependent	Household Income	currencies have been standardized into PPP USD based on the World Economic
	variable	(USD PPP)	Outlook databases October 2012 released by the International Monetary Fund
			(IMF) ¹² .
	Investigated	Access to broadband	Only for fixed broadband
	variable	Reported broadband	Based on some category (up to 256, 512, 1024, 2 MB, 4 MB, 8 MB, 12 MB, 24
	Vallable	speed	MB, 50 MB and beyond)
		Level of education	Based on three global education standards (primary, secondary, some
		Leveroreducation	colleges/universities).
Ericsson		Type of occupation	Different type of occupation
Consumer	Control variable	Gender	Male and female
Lab	Control variable	Age	Continuous variable
		Geographical area	Urban and non-Urban
		Marital status	Married and other marital status
		Household size	Continuous variable
		Type of housing	Different type of housing and dwelling (rented and owned)
		Managerial	Different level and degree of participation into decision making.
		competencies	
		Prior ICT access	Adoption to telephony, computer, laptop and notebook
		Prior ICT usage	Behavior towards ICT usage—telephony and internet for work)
		Country dummy	

Results : Access


Estimated difference in income from access to broadband, per speed.

Interpretation

- In OECD countries, gaining access to 0.5 Mbps would not be expected to yield an increased income. It seems for OECD, the threshold is somewhere between 2 Mbps and 4 Mbps.
- For BRIC countries, on the contrary, the threshold level is already visible at 0.5 Mbps.
 - Around 800 USD additional annual household income is expected to be gained by introducing 0.5 Mbps broadband connection in BRIC countries which is equivalent to 70 USD per month per household.

Results : Speed

Estimated increase on household income from speed upgrades

Interpretation

- The speed upgrades giving the highest benefit to income in BRIC and OECD are the same (0.5 to 4 Mbps)
 - A higher speed levels (8 to 24) contributes more in OECD than in BRIC.
 - The incremental income generated in OECD country is around 4% (with average income in this class 37000 USD)
 - However, BRIC countries can obtain higher impact by upgrading the speed only from 0.5 to 4 Mbps. At this scale, the countries will gain an additional household income of 2.2% for China and 4.7% for Brazil

Conclusions of the household study

- In OECD countries, gaining access to 0.5 Mbps would not be expected to yield an increased income. It seems for OECD, the threshold is somewhere between 2 Mbps and 4 Mbps.
 - For BRIC countries, on the contrary, the threshold level is already visible at 0.5 Mbps.
- The impact of broadband speed to households income
 - Is not linear between countries and regions
 - There are moving targets concerning the best speed level giving an impact to incomes:
 - In the OECD, the unconnected users will only benefit from broadband if the speed level is at least 2Mbps whilst in BRIC 0.5 Mbps would give additional benefit
 - Concerning the speed upgrade, both countries have similarities for having a greater impact moving from 4-8 Mbps. However, OECD will benefit more as speed increases up to 24 Mbps.

Annex: Descriptive analysis and variables of interest

Broadband speed: various way to measure

Term	Definition	Pros	Cons
Advertised speed	Typically the theoretically highest possible downlink net bit rate that may be obtainable on a subscribed to connection in a broadband access network	 If correctly cited, the advertised speed gives an indication of the theoretically highest possible downlink speed 	 Not real measured data
Achieved speed	The average (downlink) net bit rate (or data transfer rate) that is obtained over a connection in a broadband access network, caused by capacity limitations in the total end-to-end broadband network. This is the data rate typically measured by end users doing self-initiated speed tests	 Measured data Takes into account the entire connection line; end-to-end A speed measurement that is easily interpreted by the general public 	 Few reliable sources There are several ways to measure speed over a connection, different methods giving different results (Akamai uses mirror servers, which may – but are not aimed to – bias the outcome)
Peak speed	The average highest achieved downlink net bit rate for a population of broadband users measured from the server end in a broadband network over a defined time span	 Measured data Takes into account the entire connection line; end-to-end 	 Depends on the user's Internet behavior, and does not always correspond to the maximum possible speed Few reliable sources There are several ways to measure speed over a connection, different methods giving different results
Capacity consumption rate	The average amount of downloaded bytes over a broadband connection during one month. Measured in Mbyte/month or Gbyte/month	 Measured data Provides a measurement of the actual volume (bytes) used per month 	 The monthly data rate is not of high relevance when trying to measure broadband speed, as seconds matter to Internet users

Broadband speed: various source of data to collect from

Akamai	OECD	Ookla
The 3 countries with the highest	The 3 countries with the highest	The 3 countries with the highest
achieved broadband speeds	achieved broadband speeds	achieved broadband speeds
(Mbits/s)	(Mbits/s)	(Mbits/s)
South Korea	South Korea	South Korea
Hong Kong	Sweden	Sweden
Japan	Japan	Lithuania
0 5 10 15	0 10 20 30	20 25 30 35
Average speed (Mbit/s)	Average speed (Mbit/s)	Average speed (Mbit/s)
Akamai has servers placed world-	The statistics are based on the	The statistics are based on millions
wide in order to speed up	data from the Speedtest.net which	of recent test results from the
downloads from the Internet. It	is a service provided by Ookla. The	Speedtest.net. The top 10 countries
also measures the download	measurements were done in 2009.	each require at least 100,000 unique
speed from these servers, which	The figures are indicative-the	IP addresses. The speeds were
forms the data on which these	OECD does not provide exact	measured from Nov 3, 2008 to May
figures are based.	numbers.	5, 2011.

Figure 2 Speed level from different data sources

Source: ADL (2011)

Method Treatment effect

Example:

- Investigating the impact of drug (a *treatment variable*) on blood pressure (*a response variable*) by comparing two people
 - with treatment (drug)
 - without treatment.
- If two people are exactly the same other than the treatment status; then the difference in their blood pressure can be inferred as the impact of drug treatment.
- However, if they are different in many ways, the different in blood pressure might be as the results of many aspects (other than the drug treatment).
- Hence, the treatment effect is *"comparing comparable people"* where comparable means "homogenous on average" (Lee, 2010)

Method

Treatment effect and Propensity Score Matching (PSM)

- If the treatment group (T) and control group (C) are hugely different in many observed variables (X), e.g., socio demographic aspects (ages, gender, education, geographical area, etc.), the difference in outcome (y) cannot be associated with the difference in treatment.
- The solution is possible only by comparing the member of C and T with similar in X. To facilitate such comparisons, an index with a single value is constructed, so-called propensity matching estimators.
 - Matching by the propensity score can be done by selecting two individuals with the same propensity score, where the first individual receives treatment and the second does not. The level of propensity score p(x) is obtained by a random model (probit).
 - Ignorability of treatment hold!

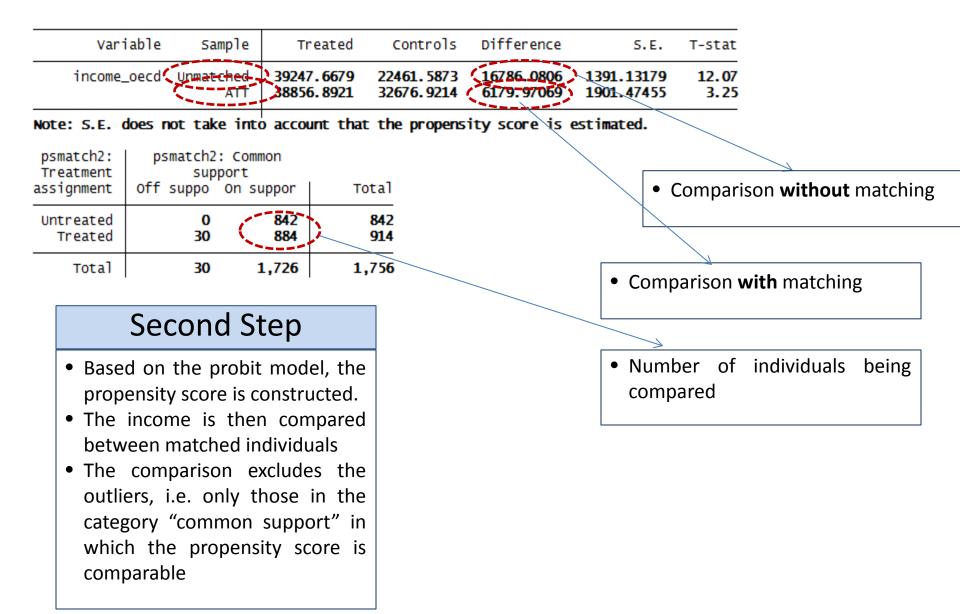
Previous studies

- <u>Beard, Ford, Saba, and Seals (2012</u>) estimate the effect of Internet use on job search. The study indicate broadband use at home or at public locations reduces the probability that the unemployed cease job search by over 50% relative to unemployed persons who do not use the Internet at all.
 - As policy implication even public connections (e.g., at libraries) in unserved and underserved areas may produce substantial social benefits.
- <u>Grimes, Ren, and Stevens (2012</u>) investigates the role of broadband for increasing productivity level in large micro-survey of firms. Employing propensity score matching to control for factors, the study indicates that broadband adoption boosts firm productivity by 7-10%; effects are consistent across urban versus rural locations and across high versus low knowledge intensive sectors.

Operationalization

Probit regress	sion			LR cl	ni2(33) =	1756 448.83
Log likelihood				Prob	≻chri2 = brR2 =	0.0000
Log Thermoo		,		r seut	U K 2 –	0.1010
s4_512	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	0055025	.0035691	-1.54	0.123	0124978	.0014927
male	.1968857	.070664	2.79	0.005	.0583869	.3353846
urban	.3789063	.1327716	2.85	0.004	.1186788	.6391338
educ1	3754027	.2184687	-1.72	0.086	8035934	.052788
educ2	.0643428	.0992358	0.65	0.517	1301558	.2588414
hhsize	1044632	.0270491	-3.86	0.000	1574785	0514479
d mar	.1158839	.0733525	1.58	0.114	0278844	.2596523
manager1	0677815	.1222466	-0.55	0.579	3073805	.1718175
manager2	1984597	.1045528	-1.90	0.058	4033795	.00646
manager4	123557	.0987323	-1.25	0.211	3170688	.0699548
work_state1	0190642	.3241786	-0.06	0.953	6544425	.6163141
work_state2	.1268552	.3131004	0.41	0.685	48681.04	.7405208
work_state3	.0497015	.327227	0.15	0.879	5916516	.6910545
d_fix	0315993	.1196567	-0.26	0.792	2661221	.2029236
d_com	3555562	.1041608	-3.41	0.001	5597077	1514047
d_lap	2740613	.0793928	-3.45	0.001	4296683	1184543
d_note	2968146	.076207	-3.89	0.000	4461776	1474516
int_work	.0365736	.01.82599	2.00	0.045	.0007849	.0723624
phone_work	.0149856	.0104997	1.43	0.154	0055935	.0355646
housing1	328883	.3029676	-1.09	0.278	9226886	.2649225
housing2	1146219	.2979015	-0.38	0.700	6984981	.4692543
housing3	4638061	.3133025	-1.48	0.139	-1.077868	.1502555
housing4	1718366	.2954922	-0.58	0.561	7509906	.4073175
housing5	3119171	.7384116	-0.42	0.673	-1.759177	1.135343
housing6	.0717192	.4110575	0.17	0.861	7339388	.8773772
country1	.8280462	.1736452	4.77	0.000	.4877078	1.168385
country2	.509093	.1509151	3.37	0.001	.2133048	.8048813
country3	1.189646	.1544658	7.70	0.000	.8868983	1.492393
country4	1.126035	.1405536	8.01	0.000	.8505553	1.401515
country5	1.7464	.138229	12.63	0.000	1.475476	2.017324
country6	1.170645	.2013851	5.81	0.000	.7759372	1.565352
country8	.1112192	.2070344	0.54	0.591	2945608	.5169991
country10	.5745548	.1440205	3.99	0.000	.2922799	.8568298
_cons	.8216679	.5383799	1.53	0.127	2335373	1.876873

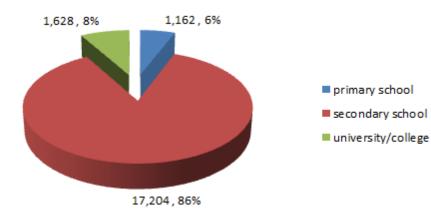
First Step

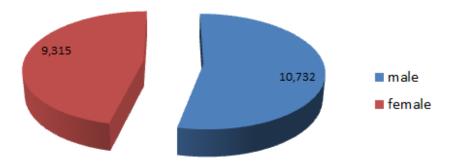

Probit models:

(i) on access to broadband
(impact from access);
(ii) subscription to a particular speed level (impact from speed upgrades)

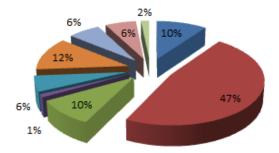
The dependent variables:

(i) Access (Yes) (No)
(ii) Subscription to particular speed level (e.g. 4 Mbps)
compared with the lower one (e.g. 2 Mbps)


Operationalization



Countries investigated


Country	Number of	Percent of
Country	respondents	total sample
UK	2,001	8,98
France	2,026	9,10
Germany	2,019	9,06
Italy	2,040	9,16
Spain	2,026	9,10
Sweden	2,003	8,99
China-urban	1,014	4,55
Japan	2,046	9,19
Brazil	1,018	4,57
US	2,013	9,04
India	1,000	4,49
Russia	1,058	4,75
Mexico	1,007	4,52
South Africa	1,003	4,50
Total	22,274	100,00

Education and gender

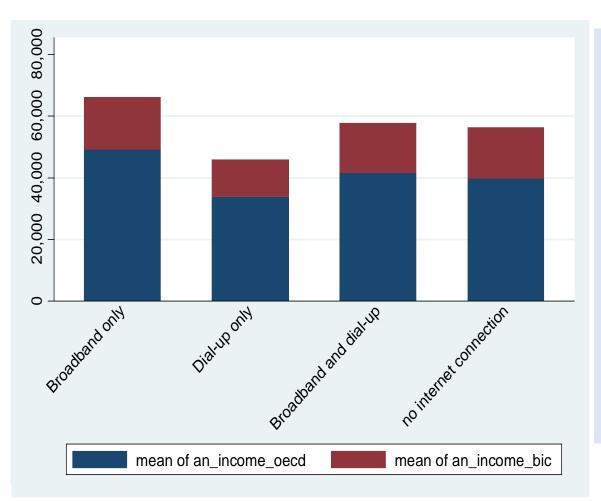
Occupation, age and size of HH

self-employed

- full-time employee
- part-time employee
- seasonally employed
- full-time homemaker
- student
- unemployed
- retired
- other

Country	Age	Household size
UK	39	2.9
France	40	2.8
Germany	41	2.5
Italy	37	3.3
Spain	35	3.1
Sweden	46	2.5
China	31	3.6
Japan	39	3.0
Brazil	30	3.6
US	41	2.8
India	28	4.2
Russia	32	3.1
Mexico	32	4.1
South Africa	37	3.5
All countries	38	3.1

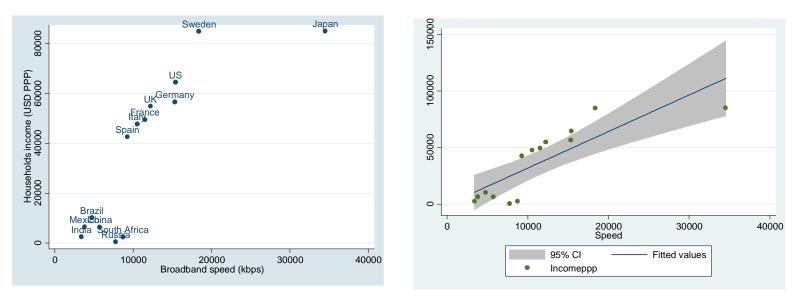
Demographic Characteristics


Demographic Characteristics of Respondents in			
Percentage			
Gender			
Male	53.5		
Female	46.5		
Marital Status			
Single	35.0		
Married	44.3		
Living together with partner/ Significant other	14.1		
Separated or divorced	5.6		
Widowed	1.0		
Age			
15 to 19 years	7.8		
20 to 24 years	13.7		
25 to 29 years	12.0		
30 to 34 years	12.0		
35 to 39 years	12.5		
40 to 44 years	10.5		
45 to 49 years	9.9		
50 to 54 years	7.7		
55 to 59 years	7.1		
60 years and over	6.9		

Demographic Characteristics of Respondents in Percentage		
Education		
Primary or less	5.8	
Some high school	85.8	
Some college/university	8.1	
Occupation		
Self-employed	10.0	
Full-time employee	47.4	
Part-time employee	9.5	
Temporarily/seasonally employed	1.1	
Full-time homemaker	5.7	
Full-time student	12.1	
Unemployed	6.4	
Retired	6.1	
Other	1.6	
Household Size		
One	12.1	
Тwo	25.8	
Three	24.4	
Four	23.8	
Five	9.5	
Six or more	4.4	

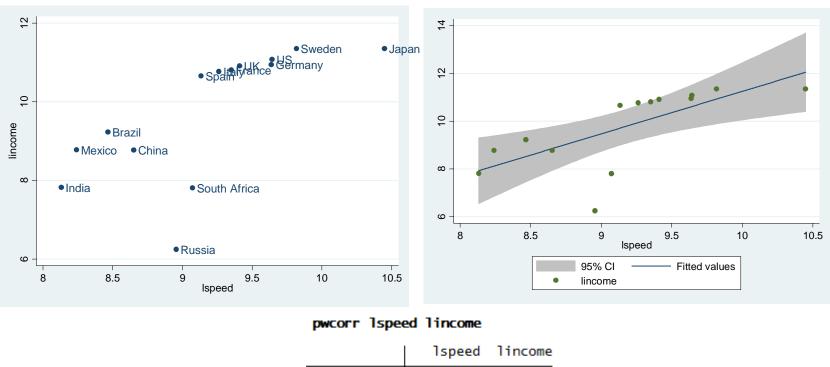
Internet Access

Internet Access of Respondents in Percentage			
Type of Internet Access			
Broadband	95.1		
Dial-up	30.6		
Broadband Speed			
Up to 256 Kbit/s	4.3		
Up to 512 Kbit/s	7.0		
Up to 1024 Kbit/s	6.9		
Up to 2 Mbit/s	10.3		
Up to 4 Mbit/s	7.6		
Up to 8 Mbit/s	13.7		
Up to 12 Mbit/s	6.3		
Up to 24 Mbit/s	5.1		
Up to 50 Mbit/s	2.0		
50 Mbit/s or higher	6.6		


Annual household income USD PPP

Generally

- The annual income is different very considerably between OECD and BRIC countries
- A higher speed level might be associated with the annual household income
- A more advanced internet connection corresponds to a higher income (dial-up vs. broadband.


Correlation: Income and speed

pwcorr speed incomeppp

	speed	income~p
speed incomeppp	1.0000 0.8319	1.0000

Correlation: Growth and speed (log levels)

lspeed 1.0000 lincome 0.6995 1.0000

The figure indicates that **"a higher speed level contributed to a higher income level"** is a possible hypothesis to be tested with a more formal econometric techniques.